Zhiwei Sun
Capital Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiwei Sun.
Science of The Total Environment | 2013
Zhixiong Shi; Yang Jiao; Yue Hu; Zhiwei Sun; Xianqing Zhou; Jinfang Feng; Jingguang Li; Yongning Wu
Three brominated flame retardants (BFRs), tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs), were measured in 103 human milk samples collected from Beijing in 2011. The donors personal information, such as dietary habit and socioeconomic and lifestyle factors, was obtained by questionnaires. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) analysis indicated that the levels of TBBPA ranged from <LOD to 12.46 ng g(-1) lipid weight (lw), with a median value of 0.10 ng g(-1) lw. Three HBCD diastereoisomers (α-, β- and γ-HBCD) were also measured using UPLC-MS/MS. The levels of ΣHBCDs ranged from <LOD to 78.28 ng g(-1) lw, with a median value of 2.40 ng g(-1) lw. α-HBCD was generally the most abundant of the three isomers. Eight PBDE congeners, BDE-28, 47, 99, 100, 153, 154, 183 and 209, were measured using gas chromatography coupled with a mass spectrometry (GC/MS). The concentrations of ΣPBDEs ranged from 0.22 to 135.41 ng g(-1) lw, with a median value of 3.24 ng g(-1) lw. BDE-209 dominated the PBDE profile in the majority of the human milk samples. The mean estimated daily intakes (EDIs) of TBBPA, ΣHBCDs and ΣPBDEs by breast-fed infants were 2.34, 24.89 and 71.27 ng kg(-1) bw day(-1), respectively. No significant correlation was found between the BFR levels in milk and the mothers diet, place of residence, smoking habit, nursing duration or computer use habit. In contrast, the mothers age, body mass index (BMI), education level and number of computers in the home were related to the levels of some types of BFRs. More research is needed to further investigate the major source(s) of exposure, the effect of each potential factor and the possible toxicological impact of high daily BFR intake on infants.
PLOS ONE | 2013
Junchao Duan; Yongbo Yu; Huiqin Shi; Linwei Tian; Caixia Guo; Peili Huang; Xianqing Zhou; Shuangqing Peng; Zhiwei Sun
Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4–96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.
Journal of Hazardous Materials | 2014
Yongbo Yu; Junchao Duan; Yang Yu; Yang Li; Xiaomei Liu; Xianqing Zhou; Kin Fai Ho; Linwei Tian; Zhiwei Sun
Silica nanoparticles (SNPs) are becoming favorable carriers for drug delivery or gene therapy, and in turn, the toxic effect of SNPs on biological systems is gaining attention. Currently, autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials, yet there have been scarcely research about the mechanisms of autophagy and autophagic cell death associated with SNPs. In this study, we verified the activation of SNPs-induced autophagy via the MDC-staining and LC3-I/LC3-II conversion, resulted in a dose-dependent manner. The typically morphological characteristics (autophagosomes and autolysosomes) of the autophagy process were observed in TEM ultrastructural analysis. In addition, the autophagic cell death was evaluated by cellular co-staining assay. And the underlying mechanisms of autophagy and autophagic cell death were performed using the intracellular ROS detection, autophagy inhibitor and ROS scavenger. Results showed that the elevated ROS level was in line with the increasing of autophagy activation, while both the 3-MA and NAC inhibitors effectively suppressed the autophagy and cell death induced by SNPs. In summary, our findings demonstrated that the SNPs-induced autophagy and autophagic cell death were triggered by the ROS generation in HepG2 cells, suggesting that exposure to SNPs could be a potential hazardous factor for maintaining cellular homeostasis.
International Journal of Nanomedicine | 2014
Junchao Duan; Yongbo Yu; Yanbo Li; Ji Wang; Geng W; Lizhen Jiang; Qi Li; Xianqing Zhou; Zhiwei Sun
Although nanoparticles have a great potential for biomedical applications, there is still a lack of a correlative safety evaluation on the cardiovascular system. This study is aimed to clarify the biological behavior and influence of silica nanoparticles (Nano-SiO2) on endothelial cell function. The results showed that the Nano-SiO2 were internalized into endothelial cells in a dose-dependent manner. Monodansylcadaverine staining, autophagic ultrastructural observation, and LC3-I/LC3-II conversion were employed to verify autophagy activation induced by Nano-SiO2, and the whole autophagic process was also observed in endothelial cells. In addition, the level of nitric oxide (NO), the activities of NO synthase (NOS) and endothelial (e)NOS were significantly decreased in a dose-dependent way, while the activity of inducible (i)NOS was markedly increased. The expression of C-reactive protein, as well as the production of proinflammatory cytokines (tumor necrosis factor α, interleukin [IL]-1β, and IL-6) were significantly elevated. Moreover, Nano-SiO2 had an inhibitory effect on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Our findings demonstrated that Nano-SiO2 could disturb the NO/NOS system, induce inflammatory response, activate autophagy, and eventually lead to endothelial dysfunction via the PI3K/Akt/mTOR pathway. This indicates that exposure to Nano-SiO2 is a potential risk factor for cardiovascular diseases.
Particle and Fibre Toxicology | 2014
Junchao Duan; Yongbo Yu; Yang Yu; Yang Li; Peili Huang; Xianqing Zhou; Shuangqing Peng; Zhiwei Sun
BackgroundGiven that the effects of ultrafine fractions (<0.1 μm) on ischemic heart diseases (IHD) and other cardiovascular diseases are gaining attention, this study is aimed to explore the influence of silica nanoparticles (SiNPs)-induced autophagy on endothelial cell homeostasis and angiogenesis.Methods and resultsUltrastructural changes of autophagy were observed in both vascular endothelial cells and pericytes in the heart of ICR mice by TEM. Autophagic activity and impaired angiogenesis were further confirmed by the immunohistochemistry staining of LC3 and VEGFR2. In addition, the immunohistochemistry results showed that SiNPs had an inhibitory effect on ICAM-1 and VCAM-1, but no obvious effect on E-selectin in vivo. The disruption of F-actin cytoskeleton occurred as an initial event in SiNPs-treated endothelial cells. The depolarized mitochondria, autophagic vacuole accumulation, LC3-I/LC3-II conversion, and the down-regulation of cellular adhesion molecule expression were all involved in the disruption of endothelial cell homeostasis in vitro. Western blot analysis indicated that the VEGFR2/PI3K/Akt/mTOR and VEGFR2/MAPK/Erk1/2/mTOR signaling pathway was involved in the cardiovascular toxicity triggered by SiNPs. Moreover, there was a crosstalk between the VEGFR2-mediated autophagy signaling and angiogenesis signaling pathways.ConclusionsIn summary, the results demonstrate that SiNPs induce autophagic activity in endothelial cells and pericytes, subsequently disturb the endothelial cell homeostasis and impair angiogenesis. The VEGFR2-mediated autophagy pathway may play a critical role in maintaining endothelium and vascular homeostasis. Our findings may provide experimental evidence and explanation for cardiovascular diseases triggered by nano-sized particles.
International Journal of Nanomedicine | 2016
Caixia Guo; Man Yang; Li Jing; Ji Wang; Yang Yu; Yang Li; Junchao Duan; Xianqing Zhou; Yanbo Li; Zhiwei Sun
Environmental exposure to silica nanoparticles (SiNPs) is inevitable due to their widespread application in industrial, commercial, and biomedical fields. In recent years, most investigators focus on the evaluation of cardiovascular effects of SiNPs in vivo and in vitro. Endothelial injury and dysfunction is now hypothesized to be a dominant mechanism in the development of cardiovascular diseases. This study aimed to explore interaction of SiNPs with endothelial cells, and extensively investigate the exact effects of reactive oxygen species (ROS) on the signaling molecules and cytotoxicity involved in SiNPs-induced endothelial injury. Significant induction of cytotoxicity as well as oxidative stress, apoptosis, and autophagy was observed in human umbilical vein endothelial cells following the SiNPs exposure (P<0.05). The oxidative stress was induced by ROS generation, leading to redox imbalance and lipid peroxidation. SiNPs induced mitochondrial dysfunction, characterized by membrane potential collapse, and elevated Bax and declined bcl-2 expression, ultimately leading to apoptosis, and also increased number of autophagosomes and autophagy marker proteins, such as LC3 and p62. Phosphorylated ERK, PI3K, Akt, and mTOR were significantly decreased, but phosphorylated JNK and p38 MAPK were increased in SiNPs-exposed endothelial cells. In contrast, all of these stimulation phenomena were effectively inhibited by N-acetylcysteine. The N-acetylcysteine supplement attenuated SiNPs-induced endothelial toxicity through inhibition of apoptosis and autophagy via MAPK/Bcl-2 and PI3K/Akt/mTOR signaling, as well as suppression of intracellular ROS property via activating antioxidant enzyme and Nrf2 signaling. In summary, the results demonstrated that SiNPs triggered autophagy and apoptosis via ROS-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling in endothelial cells, and subsequently disturbed the endothelial homeostasis and impaired endothelium. Our findings may provide experimental evidence and explanation for cardiovascular diseases triggered by SiNPs. Furthermore, results hint that the application of antioxidant may provide a novel way for safer use of nanomaterials.
PLOS ONE | 2014
Ying Xu; Na Wang; Yang Yu; Yang Li; Yanbo Li; Yongbo Yu; Xianqing Zhou; Zhiwei Sun
Environmental exposure to nanomaterials is inevitable, as nanomaterials have become part of our daily life now. In this study, we firstly investigated the effects of silica nanoparticles on the spermatogenic process according to their time course in male mice. 48 male mice were randomly divided into control group and silica nanoparticle group with 24 mice per group, with three evaluation time points (15, 35 and 60 days after the first dose) per group. Mice were exposed to the vehicle control and silica nanoparticles at a dosage of 20 mg/kg every 3 days, five times over a 13-day period, and were sacrificed at 15, 35 and 60 days after the first dose. The results showed that silica nanoparticles caused damage to the mitochondrial cristae and decreased the levels of ATP, resulting in oxidative stress in the testis by days 15 and 35; however, the damage was repaired by day 60. DNA damage and the decreases in the quantity and quality of epididymal sperm were found by days 15 and 35; but these changes were recovered by day 60. In contrast, the acrosome integrity and fertility in epididymal sperm, the numbers of spermatogonia and sperm in the testes, and the levels of three major sex hormones were not significantly affected throughout the 60-day period. The results suggest that nanoparticles can cause reversible damage to the sperms in the epididymis without affecting fertility, they are more sensitive than both spermatogonia and spermatocytes to silica nanoparticle toxicity. Considering the spermatogenesis time course, silica nanoparticles primarily influence the maturation process of sperm in the epididymis by causing oxidative stress and damage to the mitochondrial structure, resulting in energy metabolism dysfunction.
American Journal of Epidemiology | 2014
Vivian C. Pun; Ignatius Tak-sun Yu; Hong Qiu; K.F. Ho; Zhiwei Sun; Peter K.K. Louie; Tze Wai Wong; Linwei Tian
Despite an increasing number of recent studies, the overall epidemiologic evidence associating specific particulate matter chemical components with health outcomes has been mixed. The links between components and hospitalizations have rarely been examined in Asia. We estimated associations between exposures to 18 chemical components of particulate matter with aerodynamic diameter less than 10 μm (PM10) and daily emergency cardiorespiratory hospitalizations in Hong Kong, China, between 2001 and 2007. Carbonaceous particulate matter, sulfate, nitrate, and ammonium accounted for two-thirds of the PM10 mass. After adjustment for time-varying confounders, a 3.4-μg/m(3) increment in 2-day moving average of same-day and previous-day nitrate concentrations was associated with the largest increase of 1.32% (95% confidence interval: 0.73, 1.92) in cardiovascular hospitalizations; elevation in manganese level (0.02 μg/m(3)) was linked to a 0.91% (95% confidence interval: 0.19, 1.64) increase in respiratory hospitalizations. Upon further adjustment for gaseous copollutants, nitrate, sodium ion, chloride ion, magnesium, and nickel remained significantly associated with cardiovascular hospitalizations, whereas sodium ion, aluminum, and magnesium, components abundantly found in coarser PM10, were associated with respiratory hospitalizations. Most positive links were seen during the cold season. These findings lend support to the growing body of literature concerning the health associations of particulate matter composition and provide important insight into the differential health risks of components found in fine and coarse modes of PM10.
Particle and Fibre Toxicology | 2013
Na Liu; Ying Mu; Yi Chen; Hubo Sun; Sihai Han; Mengmeng Wang; Hui Wang; Yanbo Li; Qian Xu; Peili Huang; Zhiwei Sun
BackgroundQuantum dots (QDs) have been used as novel fluorescent nanoprobes for various bioapplications. The degradation of QDs, and consequent release of free cadmium ions, have been suggested to be the causes of their overall toxicity. However, in contrast to sufficient investigations regarding the biological fate of QDs, a paucity of studies have reported their chemical fate in vivo. Therefore, the overall aim of our study was to understand the chemical fate of QDs in vivo and explore analytical techniques or methods that could be used to define the chemical fate of QDs in vivo.MethodsMale ICR mice were administered a single intravenous dose (0.2xa0μmol/kg) of aqueous synthesized CdTe/ZnS aqQDs. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to simultaneously measure the concentrations of cadmium (Cd) and tellurium (Te) in the blood and tissues over the course of a 28xa0day period. We compared the blood kinetic parameters and biodistributions of Cd and Te, and used the molar ratio of Cd:Te as a marker for QDs degradation.ResultsCd and Te display different blood kinetics and biodistribution profiles. The Cd:Te ratio in the blood did not vary significantly within the first hour compared with intact CdTe/ZnS aqQDs. The Cd:Te ratio decreased gradually over time from the 6xa0h time point on. Cd accumulated in the liver, kidneys, and spleen. Te was distributed primarily to the kidneys. Sharp time-dependent increases in the Cd:Te ratio were found in liver tissues.ConclusionsQDs can undergo degradation in vivo. In vitro, QDs are chemically stable and do not elicit the same biological responses or consequences as they do in vivo. Our methods might provide valuable information regarding the degradation of QDs in vivo and may enable the design and development of QDs for biological and biomedical applications.
Ecotoxicology and Environmental Safety | 2015
Yongbo Yu; Junchao Duan; Yang Li; Yang Yu; Minghua Jin; Chenxu Li; Yapei Wang; Zhiwei Sun
Exposure to the ambient particulate matters (PM) has been associated with the morbidity and mortality of cardiopulmonary diseases. Compared with coarse particles, ultrafine particles (UFP) absorb or condense higher concentration of toxic air pollutants and are easily inhaled into the lung. However, the combined effects of UFP and air pollutants on human health are still poorly understood. In this study, a co-exposure in vitro model of amorphous silica nanoparticles (nano-SiO2) and methyl mercury (MeHg) was established to investigate their combined effects and the potential joint action type. Lung adenocarcinoma cells (A549) were exposed to either nano-SiO2 or MeHg alone, or a combination of both. Factorial design was applied to analyze their potential joint action type. Higher interfacial energy was observed in the mixed solution of nano-SiO2 and MeHg. The intracellular content of both silicon and mercury in combination group were much higher than those in single exposure groups. In addition, the co-exposure of nano-SiO2 and MeHg enhanced the reactive oxygen species (ROS) generation, lipid peroxidation and reduced the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). The excessive oxidative stress led to oxidative DNA damage as well as cellular apoptosis. Factorial design analysis demonstrated that additive and synergistic interactions were responsible for the combined toxicity of nano-SiO2 and MeHg.