Zhiyang Zhao
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiyang Zhao.
Drug Metabolism Letters | 2008
Loren M. Berry; Zhiyang Zhao
The relationship between time-dependent inactivation (TDI) and IC50 is examined using a consolidated method for evaluating CYP450 inhibition during drug discovery. An IC50 fold-shift of >1.5 indicated significant TDI potency. Further, the shifted IC50 could be used to estimate, the K(I) and TDI potency ratio k(inact)/K(I) to within 2-fold in most cases.
Analytical Chemistry | 2012
Ramin Vismeh; Daniel Waldon; Yohannes Teffera; Zhiyang Zhao
Mass spectrometric imaging (MSI) has emerged as a powerful technique to obtain spatial arrangement of individual molecular ions in animal tissues. Ambient desorption electrospray ionization (DESI) technique is uniquely suited for such imaging experiments, as it can be performed on animal tissues in their native environment without prior treatments. Although MSI has become a rapid growing technique for localization of proteins, lipids, drugs, and endogenous compounds in different tissues, quantification of imaged targets has not been explored extensively. Here we present a novel MSI approach for localization and quantification of drugs in animal thin tissue sections. DESI-MSI using an Orbitrap mass analyzer in full scan mode was performed on 6 μm coronal brain sections from rats that were administered 2.5 mg/kg clozapine. Clozapine was localized and quantified in individual brain sections 45 min postdose. External calibration curves were prepared by micropipetting standards with internal standard (IS) on top of the tissues, and average response factors were calculated for the scans in which both clozapine and IS were detected. All response factors were normalized to area units. Quantifications from DESI-MSI revealed 0.2-1.2 ng of clozapine in individual brain sections, results that were further confirmed by extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis.
Drug Metabolism Letters | 2009
Loren M. Berry; Lance Wollenberg; Zhiyang Zhao
Species and tissue differences in the activity of three major classes of esterases, carboxylesterase (CE), butyrylcholinesterase (BChE) and paraoxonase (PON), were studied. Substantial species differences in activity of these esterases were observed between the mouse, rat, dog monkey and human. Such species differences must be considered when using these preclinical species to optimize the pharmacokinetic properties of ester compounds intended for human use.
Journal of Medicinal Chemistry | 2008
Daniel S. La; Julie Belzile; James Bready; Angela Coxon; Thomas DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Shaun Flynn; Russell Graceffa; Shawn P. Harriman; Jay Larrow; Alexander M. Long; Matthew W. Martin; Michael J. Morrison; Vinod F. Patel; Philip Roveto; Ling Wang; Matthew Weiss; Douglas A. Whittington; Yohannes Teffera; Zhiyang Zhao; Anthony Polverino; Jean-Christophe Harmange
Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.
BMC Pharmacology | 2012
Thomas A. Munro; Loren Berry; Ashlee Van’t Veer; Cécile Béguin; F. Ivy Carroll; Zhiyang Zhao; William A. Carlezon; Bruce M. Cohen
BackgroundNor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor.MethodsTo evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS).ResultsIn each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2). Brain homogenate binding was within the range of many shorter-acting drugs (>7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism.ConclusionsThe negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes.
Biological Psychiatry | 2014
Shayla Russell; Anna B. Rachlin; Karen L. Smith; John W. Muschamp; Loren Berry; Zhiyang Zhao; Elena H. Chartoff
BACKGROUNDnDynorphin, an endogenous ligand at kappa opioid receptors (KORs), produces depressive-like effects and contributes to addictive behavior in male nonhuman primates and rodents. Although comorbidity of depression and addiction is greater in women than men, the role of KORs in female motivated behavior is unknown.nnnMETHODSnIn adult Sprague-Dawley rats, we used intracranial self-stimulation to measure effects of the KOR agonist (±)-trans-U-50488 methanesulfonate salt (U-50488) (.0-10.0 mg/kg) on brain stimulation reward in gonadally intact and castrated males and in females at estrous cycle stages associated with low and high estrogen levels. Pharmacokinetic studies of U-50488 in plasma and brain were conducted. Immunohistochemistry was used to identify sex-dependent expression of U-50488-induced c-Fos in brain.nnnRESULTSnU-50488 dose-dependently increased the frequency of stimulation (threshold) required to maintain intracranial self-stimulation responding in male and female rats, a depressive-like effect. However, females were significantly less sensitive than males to the threshold-increasing effects of U-50488, independent of estrous cycle stage in females or gonadectomy in males. Although initial plasma concentrations of U-50488 were higher in females, there were no sex differences in brain concentrations. Sex differences in U-50488-induced c-Fos activation were observed in corticotropin releasing factor-containing neurons of the paraventricular nucleus of the hypothalamus and primarily in non-corticotropin releasing factor-containing neurons of the bed nucleus of the stria terminalis.nnnCONCLUSIONSnThese data suggest that the role of KORs in motivated behavior of rats is sex-dependent, which has important ramifications for the study and treatment of mood-related disorders, including depression and drug addiction in people.
Journal of Pharmacology and Experimental Therapeutics | 2007
Cécile Béguin; David N. Potter; Jennifer A. DiNieri; Thomas A. Munro; Michele R. Richards; Tracie A. Paine; Loren Berry; Zhiyang Zhao; Bryan L. Roth; Wei Xu; Lee Yuan Liu-Chen; William A. Carlezon; Bruce M. Cohen
Several preclinical studies indicate that selective κ-opioid receptor (KOR) antagonists have antidepressant-like effects, whereas KOR agonists have opposite effects, suggesting that each might be useful in the treatment of mood abnormalities. Salvinorin A (salvA) is a valuable KOR agonist for further study due to its high potency and receptor selectivity. However, it has short lasting effects in vivo and limited oral bioavailability, probably due to acetate metabolism. We compared the in vitro receptor binding selectivity of salvA and four analogs containing an ethyl ether (EE), isopropylamine (IPA), N-methylacetamide (NMA), or N-methylpropionamide (NMP) at C-2. All compounds showed high binding affinity for the KOR (Ki = 0.11–6.3 nM), although only salvA, EE, and NMA exhibited KOR selectivity. In a liver microsomal assay, salvA was least stable, whereas NMA and IPA displayed slower metabolic transformations. Intraperitoneal (i.p.) administration of salvA, NMA, and NMP dose-dependently elevated brain reward thresholds in the intracranial self-administration (ICSS) test, consistent with prodepressive-like KOR agonist effects. NMA and NMP were equipotent to salvA but displayed longer lasting effects (6- and 10-fold, respectively). A dose of salvA with prominent effects in the ICSS test after i.p. administration (2.0 mg/kg) was inactive after oral administration, whereas the same oral dose of NMA elevated ICSS thresholds. These studies suggest that, although salvA and NMA are similar in potency and selectivity as KOR agonists in vitro, NMA has improved stability and longer lasting actions that might make it more useful for studies of KOR agonist effects in animals and humans.
Drug Metabolism and Disposition | 2010
Loren Berry; Jonathan Roberts; Xuhai Be; Zhiyang Zhao; Min-Hwa Jasmine Lin
To predict volume of distribution at steady-state (Vss), empirical (e.g., allometry) and mechanistic (using physicochemical property data and plasma protein binding) methods have been used. None of these approaches has been able to predict Vss accurately for the total compliment of a wide range of drugs. Therefore, alternative approaches would be of value. This study evaluates the utility of in vitro nonspecific tissue-binding measurements in predicting Vss for a wide range of drugs in rats. Literature as well as proprietary compounds were studied. It was found that in vitro tissue-binding measurements combined with calculated effects of the pH partition hypothesis often predict Vss more accurately than other available mechanistic methods and that this approach can compliment existing methods. The Vss values for some compounds were not accurately predicted using either nonspecific tissue-binding experiments or other available mechanistic methods. The Vss for these drugs may not be describable by nonspecific tissue binding alone; there may be significant specific components to the mechanism of distribution for these drugs, such as pH-dependent uptake into lysosomes (primarily strongly basic drugs), active transport, and/or enterohepatic recirculation. A lack of prediction for certain drugs warrants further investigation into these mechanisms and their application to more accurate prediction of Vss by mechanistic means.
Drug Metabolism and Disposition | 2011
Loren Berry; Chao Li; Zhiyang Zhao
Prediction of human volume of distribution at steady state (Vss) before first administration of a new drug candidate to humans has become an important part of the drug development process. This study examines the assumptions behind interspecies scaling techniques used to predict human Vss from preclinical data, namely the equivalency of Vss,u and/or fut across species. In addition, several interspecies scaling techniques are evaluated side by side using a set of 67 reference compounds where observed Vss from rats, dogs, monkeys, and humans were compiled from the literature and where plasma protein binding was determined across species using an ultracentrifugation technique. Species similarity in Vss,u or fut does not appear to be the norm among rats, dogs, monkeys, or humans. Despite this, interspecies scaling from rats, dogs, and monkeys is useful and can provide reasonably accurate predictions of human Vss, although some interspecies scaling approaches were better than others. For example, the performance of the common Vss,u or fut equivalency approaches using average Vss,u or fut across three preclinical species was superior to allometric scaling techniques. In addition, considering data from several preclinical species, using the equivalency approach, was superior to scaling from any single species. Although the mechanistic tissue composition equations available in the Simcyp population-based pharmacokinetic simulator did not necessarily provide the most accurate predictions, and the equations used likely need refinement, they still provide the best opportunity for a mechanistic understanding and prediction of human Vss.
Chemical Research in Toxicology | 2008
Yohannes Teffera; Adria Colletti; Jean Christophe Harmange; L. Steven Hollis; Brian K. Albrecht; Alessandro Boezio; Jingzhou Liu; Zhiyang Zhao
AMG 458 {1-(2-hydroxy-2-methylpropyl)-N-[5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl]-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide} is a potent, selective inhibitor of c-Met, a receptor tyrosine kinase that is often deregulated in cancer. AMG 458 was observed to bind covalently to liver microsomal proteins from rats and humans in the absence of NADPH. When [(14)C]AMG 458 was incubated with liver microsomes in the presence of glutathione and N-acetyl cysteine, thioether adducts were detected by radiochromatography and LC/MS/MS analysis. These adducts were also formed upon incubation of AMG 458 with glutathione and N-acetyl cysteine in buffers at pH 7.4. In vivo, the thioether adducts were detected in bile and urine of bile duct-cannulated rats dosed with [(14)C]AMG 458. The two adducts were isolated, and their structures were determined by MS/MS and NMR analysis. The identified structures resulted from a thiol displacement reaction to yield a quinoline thioether structure and the corresponding hydroxyaryl moiety. The insights gained from elucidating the mechanism of adduct formation led to the design of AMG 458 analogues that exhibited eliminated or reduced glutathione adduct formation in vitro and in vivo.