Zhiyi Sun
New England Biolabs
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiyi Sun.
Cell Reports | 2013
Zhiyi Sun; Jolyon Terragni; Janine G. Borgaro; Yiwei Liu; Ling Yu; Shengxi Guan; Hua Wang; Dapeng Sun; Xiaodong Cheng; Zhenyu Zhu; Sriharsa Pradhan; Yu Zheng
We describe the use of a unique DNA-modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5-hydroxymethylcytosine (5hmC) at low-occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follow the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the monomethylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or demethylation intermediate, whereas others may suggest a locally accessible chromosomal environment for the TET enzymatic apparatus.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Devora Cohen-Karni; Derrick Xu; Lynne Apone; Alexey Fomenkov; Zhiyi Sun; Paul J. Davis; Shannon R. M. Kinney; Megumu Yamada-Mabuchi; Shuang-yong Xu; Theodore B. Davis; Sriharsa Pradhan; Richard J. Roberts; Yu Zheng
MspJI is a novel modification-dependent restriction endonuclease that cleaves at a fixed distance away from the modification site. Here, we present the biochemical characterization of several MspJI homologs, including FspEI, LpnPI, AspBHI, RlaI, and SgrTI. All of the enzymes specifically recognize cytosine C5 modification (methylation or hydroxymethylation) in DNA and cleave at a constant distance (N12/N16) away from the modified cytosine. Each displays its own sequence context preference, favoring different nucleotides flanking the modified cytosine. By cleaving on both sides of fully modified CpG sites, they allow the extraction of 32-base long fragments around the modified sites from the genomic DNA. These enzymes provide powerful tools for direct interrogation of the epigenome. For example, we show that RlaI, an enzyme that prefers mCWG but not mCpG sites, generates digestion patterns that differ between plant and mammalian genomic DNA, highlighting the difference between their epigenomic patterns. In addition, we demonstrate that deep sequencing of the digested DNA fragments generated from these enzymes provides a feasible method to map the modified sites in the genome. Altogether, the MspJI family of enzymes represent appealing tools of choice for method development in DNA epigenetic studies.
Epigenetics & Chromatin | 2013
Koji Tsumagari; Carl Baribault; Jolyon Terragni; Sruti Chandra; Chloe Renshaw; Zhiyi Sun; Lingyun Song; Gregory E. Crawford; Sriharsa Pradhan; Michelle Lacey; Melanie Ehrlich
BackgroundTight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues.ResultsIn this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3′ half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site.ConclusionsOur results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5′ promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures.
Proceedings of the National Academy of Sciences of the United States of America | 2015
June E. Pais; Nan Dai; Esta Tamanaha; Romualdas Vaisvila; Alexey Fomenkov; Jurate Bitinaite; Zhiyi Sun; Shengxi Guan; Ivan R. Corrêa; Christopher J. Noren; Xiaodong Cheng; Richard J. Roberts; Yu Zheng; Lana Saleh
Significance The discovery that 5-methylcytosine (5mC) can be iteratively oxidized by mammalian ten-eleven translocation (TET) proteins marks a breakthrough in the field of epigenetics. To better understand the evolutionary and functional linkage of TET family members, we characterized NgTET1 from the protist Naegleria gruberi, which bears homology to both TET and base J-binding protein, a thymidine hydroxylase in trypanosomes. We show that NgTET1 performs iterative oxidation of both 5mC and thymidine (T) (minor activity) on various DNA forms, and that these activities can be modulated by mutagenesis. We also present evidence for the effect of sequence context on both 5mC- and T-oxygenase activities. Finally, we show the utility of NgTET1 at direct methylome profiling using single-molecule, real-time sequencing. Modified DNA bases in mammalian genomes, such as 5-methylcytosine (5mC) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of 5mC to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like 5mC oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both 5mC (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine (5fU) and 5-carboxyuridine (5caU) in vitro. Mutagenesis studies reveal a delicate balance between choice of 5mC or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to 5mCpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in 5mC sequencing technologies such as single molecule, real-time sequencing to map 5mC in bacterial genomes at base resolution.
Epigenetics | 2014
Jolyon Terragni; Guoqiang Zhang; Zhiyi Sun; Sriharsa Pradhan; Lingyun Song; Gregory E. Crawford; Michelle Lacey; Melanie Ehrlich
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.
Nature | 2018
Peter W.S. Hill; Harry G. Leitch; Cristina E. Requena; Zhiyi Sun; Rachel Amouroux; Monica Roman-Trufero; Malgorzata Borkowska; Jolyon Terragni; Romualdas Vaisvila; Sarah Linnett; Hakan Bagci; Gopuraja Dharmalingham; Vanja Haberle; Boris Lenhard; Yu Zheng; Sriharsa Pradhan; Petra Hajkova
Gametes are highly specialized cells that can give rise to the next generation through their ability to generate a totipotent zygote. In mice, germ cells are first specified in the developing embryo around embryonic day (E) 6.25 as primordial germ cells (PGCs). Following subsequent migration into the developing gonad, PGCs undergo a wave of extensive epigenetic reprogramming around E10.5-E11.5, including genome-wide loss of 5-methylcytosine. The underlying molecular mechanisms of this process have remained unclear, leading to our inability to recapitulate this step of germline development in vitro. Here we show, using an integrative approach, that this complex reprogramming process involves coordinated interplay among promoter sequence characteristics, DNA (de)methylation, the polycomb (PRC1) complex and both DNA demethylation-dependent and -independent functions of TET1 to enable the activation of a critical set of germline reprogramming-responsive genes involved in gamete generation and meiosis. Our results also reveal an unexpected role for TET1 in maintaining but not driving DNA demethylation in gonadal PGCs. Collectively, our work uncovers a fundamental biological role for gonadal germline reprogramming and identifies the epigenetic principles of the PGC-to-gonocyte transition that will help to guide attempts to recapitulate complete gametogenesis in vitro.Gametes are highly specialized cells that can give rise to the next generation through their ability to generate a totipotent zygote. In mice, germ cells are first specified in the developing embryo around embryonic day (E) 6.25 as primordial germ cells (PGCs). Following subsequent migration into the developing gonad, PGCs undergo a wave of extensive epigenetic reprogramming around E10.5–E11.5, including genome-wide loss of 5-methylcytosine. The underlying molecular mechanisms of this process have remained unclear, leading to our inability to recapitulate this step of germline development in vitro. Here we show, using an integrative approach, that this complex reprogramming process involves coordinated interplay among promoter sequence characteristics, DNA (de)methylation, the polycomb (PRC1) complex and both DNA demethylation-dependent and -independent functions of TET1 to enable the activation of a critical set of germline reprogramming-responsive genes involved in gamete generation and meiosis. Our results also reveal an unexpected role for TET1 in maintaining but not driving DNA demethylation in gonadal PGCs. Collectively, our work uncovers a fundamental biological role for gonadal germline reprogramming and identifies the epigenetic principles of the PGC-to-gonocyte transition that will help to guide attempts to recapitulate complete gametogenesis in vitro.
Molecular Cell | 2015
Zhiyi Sun; Nan Dai; Janine G. Borgaro; Aine Quimby; Dapeng Sun; Ivan R. Corrêa; Yu Zheng; Zhenyu Zhu; Shengxi Guan
PLOS ONE | 2017
Alexey Fomenkov; Zhiyi Sun; Deborah Kay Dila; Brian P. Anton; Richard J. Roberts; Elisabeth A. Raleigh; Albert Jeltsch
Archive | 2015
Zhenyu Zhu; Janine G. Borgaro; Aine Quimby; Shengxi Guan; Zhiyi Sun
Cell Reports | 2013
Zhiyi Sun; Jolyon Terragni; Janine G. Borgaro; Yiwei Liu; Ling Yu; Shengxi Guan; Hua Wang; Dapeng Sun; Xiaodong Cheng; Zhenyu Zhu; Sriharsa Pradhan; Yu Zheng