Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiyi Zhou is active.

Publication


Featured researches published by Zhiyi Zhou.


Journal of Biomechanics | 1998

Differential effect of steady versus oscillating flow on bone cells

Christopher R. Jacobs; Clare E. Yellowley; B.R. Davis; Zhiyi Zhou; John M. Cimbala; Henry J. Donahue

Loading induced fluid flow has recently been proposed as an important biophysical signal in bone mechanotransduction. Fluid flow resulting from activities which load the skeleton such as standing, locomotion, or postural muscle activity are predicted to be dynamic in nature and include a relatively small static component. However, in vitro fluid flow experiments with bone cells to date have been conducted using steady or pulsing flow profiles only. In this study we exposed osteoblast-like hFOB 1.19 cells (immortalized human fetal osteoblasts) to precisely controlled dynamic fluid flow profiles of saline supplemented with 2% fetal bovine serum while monitoring intracellular calcium concentration with the fluorescent dye fura-2. Applied flows included steady flow resulting in a wall shear stress of 2 N m(-2), oscillating flow (+/-2 Nm(-2)), and pulsing flow (0 to 2 N m(-2)). The dynamic flows were applied with sinusoidal profiles of 0.5, 1.0, and 2.0 Hz. We found that oscillating flow was a much less potent stimulator of bone cells than either steady or pulsing flow. Furthermore, a decrease in responsiveness with increasing frequency was observed for the dynamic flows. In both cases a reduction in responsiveness coincides with a reduction in the net fluid transport of the flow profile. Thus. these findings support the hypothesis that the response of bone cells to fluid flow is dependent on chemotransport effects.


Journal of Bone and Mineral Research | 2010

Functional gap junctions between osteocytic and osteoblastic cells.

Clare E. Yellowley; Zhongyong Li; Zhiyi Zhou; Christopher R. Jacobs; Henry J. Donahue

Morphological evidence shows that osteocytes, bone cells that exist enclosed within bone matrix, are connected to one another and to surface osteoblasts via gap junctions; however, it is unknown whether these gap junctions are functional. Using a newly established murine osteocytic cell line MLO‐Y4, we have examined functional gap junctional intercellular communication (GJIC) between osteocytic cells and between osteocytic and osteoblastic cells. In our hands, MLO‐Y4 cells express phenotypic characteristics of osteocytic cells including a stellate morphology, low alkaline phosphatase activity, and increased osteocalcin messenger RNA (mRNA) compared with osteoblastic cells. Northern and Western blot analysis revealed that MLO‐Y4 cells express abundant connexin 43 (Cx43) mRNA and protein, respectively. Lucifer yellow dye transferred from injected to adjacent cells suggesting that osteocytic cells were functionally coupled via gap junctions. Functional GJIC between osteocytic and osteoblastic (MC3T3‐E1) cells was determined by monitoring the passage of calcein dye between the two cell types using a double labeling technique. The ability of bone cells to communicate a mechanical signal was assessed by mechanically deforming the cell membrane of single MLO‐Y4 cells, cocultured with MC3T3‐E1 cells. Deformation induced calcium signals in MLO‐Y4 cells and those elicited in neighboring MC3T3‐E1 cells were monitored with the calcium sensitive dye Fura‐2. Our results suggest that osteocytic MLO‐Y4 cells express functional gap junctions most likely composed of Cx43. Furthermore, osteocytic and osteoblastic cells are functionally coupled to one another via gap junctions as shown by the ability of calcein to pass between cells and the ability of cells to communicate a mechanically induced calcium response. (J Bone Miner Res 2000;15:209–217)


Biomaterials | 2008

Surface energy effects on osteoblast spatial growth and mineralization

Jung Yul Lim; Michael Shaughnessy; Zhiyi Zhou; Hyeran Noh; Erwin A. Vogler; Henry J. Donahue

While short-term surface energy effects on cell adhesion are relatively well known, little is revealed as regards its later stage effects on cell behavior. We examined surface energy effects on osteoblastic cell growth and mineralization by using human fetal osteoblastic (hFOB) cells cultured on plasma-treated quartz (contact angle, theta=0 degrees) and octadecyltrichlorosilane (OTS)-treated quartz (theta=113 degrees). hFOB cells formed a homogeneous cell layer on plasma-treated quartz, while those cultured on OTS-treated quartz produced randomly distributed clump-like structures that were filled with cells (confirmed by confocal microscopy). Mineral deposition by hFOB cells was spatially homogeneous when cultured on hydrophilic surfaces. Furthermore, cells on hydrophilic surfaces exhibited increased mineralized area as well as enhanced mineral-to-matrix ratio (assessed by Fourier transform infrared spectroscopy), relative to cells on hydrophobic surfaces. Experiments using other types of osteoblast-like cells (MC3T3-E1, MG63, and SAOS-2) revealed more or less similar effects in spatial growth morphology. It was concluded that hydrophilic surfaces induce homogeneous spatial osteoblastic cell growth and mineral deposition and enhance the quantity (e.g., area) and quality (e.g., mineral-to-matrix ratio) of mineralization relative to hydrophobic surfaces. Our data suggest that surface energy effects on osteoblastic cell differentiation, especially mineralization, may be correlated with surface energy dependent changes in spatial cell growth.


Bone | 1999

Inhibiting gap junctional intercellular communication alters expression of differentiation markers in osteoblastic cells.

Zhongyong Li; Zhiyi Zhou; Clare E. Yellowley; Henry J. Donahue

Gap junctional intercellular communication (GJIC) may contribute to cellular differentiation. To examine this possibility in bone cells we examined markers of cellular differentiation, including alkaline phosphatase, osteocalcin, and osteopontin, in ROS17/2.8 cells (ROS), a rat osteoblastic cell line expressing phenotypic characteristics of fully differentiated osteoblasts. We utilized ROS rendered communication deficient either by stable transfection with antisense cDNA to connexin 43 (Cx43), the predominant gap junction protein in bone (RCx16 cells), or by overexpression of Cx45, a gap junction protein not normally expressed in ROS (ROS/Cx45 cells). Both RCx16 and ROS/Cx45 cells displayed reduced dye coupling and Cx43 protein expression relative to ROS, control transfectants, and ROS/Cx45tr, ROS cells expressing carboxylterminal truncated Cx45. Steady-state mRNA levels for osteocalcin as well as alkaline phosphatase activity, two markers of osteoblastic differentiation, were also reduced in poorly coupled RCx16 and ROS/Cx45 cells. On the other hand, steady-state mRNA levels for osteopontin increased slightly in RCx16 and ROS/Cx45 cells. These results suggest that GJIC at least partly contributes to the regulation of expression of markers of osteoblastic differentiation.


Bone | 2003

Fluid flow-induced prostaglandin E2 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium

Marnie M. Saunders; J. You; Zhiyi Zhou; Zhongyong Li; Clare E. Yellowley; Elaine Kunze; Christopher R. Jacobs; Henry J. Donahue

It has been well demonstrated that bone adapts to mechanical loading. To accomplish this at the cellular level, bone cells must be responsive to mechanical loading (mechanoresponsive). This can occur via such mechanisms as direct cell deformation or signal transduction via complex pathways involving chemotransport, hormone response, and/or gene expression, to name a few. Mechanotransduction is the process by which a bone cell senses a biophysical signal and elicits a response. While it has been demonstrated that bone cells can respond to a wide variety of biophysical signals including fluid flow, stretch, and magnetic fields, the exact pathways and mechanisms involved are not clearly understood. We postulated that gap junctions may play an important role in bone cell responsiveness. Gap junctions (GJ) are membrane-spanning channels that physically link cells and support the transport of small molecules and ions in the process of gap junctional intercellular communication (GJIC). In this study we examined the role of GJ and GJIC in mechanically stimulated osteoblastic cells. Following fluid flow stimulation, we quantified prostaglandin E(2) (PGE(2)) (oscillatory flow) and cytosolic calcium (Ca(2+)) (oscillatory and steady flow) responses in ROS 17/2.8 cells and a derivative of these cells expressing antisense cDNA for the gap junction protein connexin 43 (RCx16) possessing significantly different levels of GJIC. We found that the ROS17/2.8 cells possessing increased GJIC also exhibited increased PGE(2) release to the supernatant following oscillatory fluid flow stimulation in comparison to coupling-decreased RCx16 cells. Interestingly, we found that neither osteoblastic cell line responded to oscillatory or steady fluid flow stimulation with an increase in Ca(2+). Thus, our results suggest that GJ and GJIC may be important in the mechanotransduction mechanisms by which PGE(2) is mechanically induced in osteoblastic cells independent of Ca(2+).


International Journal of Cancer | 2004

Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells.

Preeti Kapoor; Marnie M. Saunders; Zhongyong Li; Zhiyi Zhou; Nate Sheaffer; Elaine Kunze; Rajeev S. Samant; Danny R. Welch; Henry J. Donahue

The breast cancer metastasis‐suppressor gene BRMS1 is downregulated in metastatic breast cancer cells. Previous reports have shown restoration of gap junctional intercellular communication (GJIC) in the metastatic human breast carcinoma cell line MDA‐MB‐435 (435) transfected with BRMS1 cDNA. Metastasis, to a large extent in most breast cancers, occurs to bone. However, the reason for this preferential metastasis is not known. We explored cell‐to‐cell communication between 435 carcinoma cells and a human osteoblastic cell line, hFOB1.19, to determine whether carcinoma cells can form gap junctions with bone cells and to explore the role of these heterotypic gap junctions and the BRMS1 gene in breast cancer metastasis to bone. 435 cells displayed greater cell‐to‐cell communication with hFOB 1.19 cells than with themselves. Transfection of BRMS1 into 435 cells increased homotypic gap junctional communication but did not significantly affect heterotypic communication with hFOBs. However, heterotypic communication of BRMS1 transfectants with hFOB cells was reduced relative to homotypic communication. In contrast, parental 435 cells displayed greater heterotypic communication with hFOBs relative to homotypic communication. Our results suggest that there are differences in the relative homotypic and heterotypic GJIC of metastasis‐capable and ‐suppressed cell lines.


Clinical & Experimental Metastasis | 2008

Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs

Zhongyong Li; Zhiyi Zhou; Danny R. Welch; Henry J. Donahue

Recently the concept that gap junctions play a role in cancer cell metastasis has emerged. However, the mechanism by which this might occur is unknown. To examine this issue a metastatic breast cancer cell line, MDA-MB-435, was stably transfected with human Cx43 cDNA. Four clones of 435 transfectants (435/Cx43+ c1, c6, c8, c14) and two clones of plasmid control (435/hy) were isolated and examined in this study. We found that expressing Cx43 in MDA-MB-435 cells decreased their expression of Cx32 but did not affect gap junctional intercellular communication, migration or invasion through Matrigel®. However, forced expression of Cx43 decreased the growth of MDA-MB-435 cells, decreased expression of N-cadherin, which is frequently associated with an aggressive phenotype, and increased MDA-MB-435 sensitivity to apoptosis. More importantly, there were fewer lung metastases in mice injected with 435/Cx43+ cells relative to mice injected with 435/hy. These results suggest that expressing Cx43 in breast cancer cells decreases their metastatic potential through a mechanism independent of gap junctional communication but, rather, related to N-cadherin expression and apoptosis.


Clinical & Experimental Metastasis | 2008

Alterations in Cx43 and OB-cadherin affect breast cancer cell metastatic potential

Zhongyong Li; Zhiyi Zhou; Henry J. Donahue

Emerging evidence suggests that gap junctional intercellular communication (GJIC) and expression of connexins (Cx) contribute to the metastatic potential of breast cancer cells. To more directly address this, an aggressive bone metastasis breast cancer cell line, MDA-MET (MET), was stably transfected with human Cx43 cDNA (MET/Cx43+). Focusing on clone 28 of MET/Cx43+, we demonstrated that GJIC, Cx43 protein and Cx43 mRNA were significantly increased in MET/Cx43+ cells relative to MET, the plasmid control for the Cx43 transfectants (MET/HY) and a metastatic breast cancer cell that is less metastatic to bone than MET, MDA-MB-231. Cx26 mRNA was also increased in MET/Cx43+ clone 28 cells while mRNA for Cx32, Cx37, Cx40 and Cx45 were not detected in any of the breast cancer cell lines examined. MET/Cx43+ clone 28 invasiveness was decreased by 33% relative to MET/HY, while their ability to migrate was unchanged. The ability of MET/Cx43+ clone 28 cells to adhere to hFOB and HUV-EC-C cells was decreased approximately 30% and 70%, respectively, relative to MET and MET/HY. E-cadherin and N-cadherin proteins were not detected in MET, MDA-MB-231, MET/Cx43+ clone 28 and MET/HY cells. However, OB-cadherin protein levels were decreased approximately 43% in MET/Cx43+ clone 28 relative to MET/HY cells. These findings suggest that GJIC and Cx43 expression contribute to breast cancer cell adhesion and migration, possibly through a mechanism involving OB-cadherin, and these changes in turn regulate the metastatic potential of breast cancer cells, especially to bone.


Journal of Orthopaedic Research | 2012

Age‐related changes in gap junctional intercellular communication in osteoblastic cells

Damian C. Genetos; Zhiyi Zhou; Zhongyong Li; Henry J. Donahue

Aging demonstrates deleterious effects upon the skeleton which can predispose an individual to osteoporosis and related fractures. Despite the well‐documented evidence that aging decreases bone formation, there remains little understanding whereby cellular aging alters skeletal homeostasis. We, and others, have previously demonstrated that gap junctions—membrane‐spanning channels that allow direct cell‐to‐cell conductance of small signaling molecules—are critically involved in osteoblast differentiation and skeletal homeostasis. We examined whether the capacity of rat osteoblastic cells to form gap junctions and respond to known modulators of gap junction intercellular communication (GJIC) was dependent on the age of the animal from which they were isolated. We observed no effect of age upon osteoblastic Cx43 mRNA, protein or GJIC. We also examined age‐related changes in PTH‐stimulated GJIC. PTH demonstrated age‐dependent effects upon GJIC: Osteoblastic cells from young rats increased GJIC in response to PTH, whereas there was no change in GJIC in response to PTH in osteoblastic cells from mature or old rats. PTH‐stimulated GJIC occurred independently of changes in Cx43 mRNA or protein expression. Cholera toxin significantly increased GJIC in osteoblastic cells from young rats compared to those from mature and old rats. These data demonstrate an age‐related impairment in the capacity of osteoblastic cells to generate functional gap junctions in response to PTH, and suggest that an age‐related defect in G protein‐coupled adenylate cyclase activity at least partially contributes to decreased PTH‐stimulated GJIC.


BioResearch Open Access | 2013

BRMS1 Sensitizes Breast Cancer Cells to ATP-Induced Growth Suppression

Yue Zhang; Karis Chin-Quee; Ryan C. Riddle; Zhongyong Li; Zhiyi Zhou; Henry J. Donahue

Abstract Purinergic signaling may represent an effective target in cancer therapy because the expression of purinergic receptors is altered in many forms of cancer and extracellular nucleotides modulate cancer cell growth. We examined the effect of extracellular ATP on the growth of the metastatic breast carcinoma cell line MDA-MB-435 relative to an immortalized breast epithelial cell line, hTERT-HME1. We also investigated whether the metastasis suppressor gene BRMS1 alters the sensitivity of breast cancer cells to ATP. Exposure to ATP for 24 h decreased proliferation and induced apoptosis in hTERT-HME1. However, exposure to ATP did not decrease proliferation or induce apoptosis in MDA-MD-435 cells until 48 h of exposure and only at higher doses than were effective with hTERT-HME1, suggesting MDA-MB-435 cells were resistant to the antiproliferative and apoptosis-inducing effects of ATP. Exposure to ATP for 24 h induced a decrease in proliferation of MDA-MB-435 cells expressing BRMS1, similar to hTERT-HME1, but did not induce an increase in apoptosis. MDA-MB-435 cells expressed low levels of the purinergic receptor P2Y2, as well as decreased ATP-induced cytosolic calcium mobilization, relative to hTERT-HME1. However, expressing BRMS1 in MDA-MB-435 cells restored P2Y2 levels and ATP-induced cytosolic calcium mobilization such that they were similar to hTERT-HME1. These data suggest that BRMS1 increases the sensitivity of breast cancer cells to the antiproliferative, but not apoptosis-inducing effects of ATP and that this is at least partly mediated by increased expression of the P2Y2 receptor.

Collaboration


Dive into the Zhiyi Zhou's collaboration.

Top Co-Authors

Avatar

Henry J. Donahue

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Zhongyong Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Clare E. Yellowley

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda F. Taylor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Elaine Kunze

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John M. Cimbala

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jung Yul Lim

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge