Zhiying Zhang
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiying Zhang.
Yeast | 2011
Tingting Zhang; Jie Lei; Hanjiang Yang; Kun Xu; Rui Wang; Zhiying Zhang
A new method for protein extraction from yeast Saccharomyces cerevisiae cells is described. This method involves the use of LiAc and NaOH to enhance the permeability of yeast cell wall prior to protein extraction with SDS‐PAGE sample buffer. It was safe and efficient compared to other methods reported so far in the literature. The proteins extracted with this new method retained their immunoreactive properties and are suitable for most applications in molecular biology studies. Copyright
Vaccine | 2011
Tingting Zhang; Hanjiang Yang; Rui Wang; Kun Xu; Ying Xin; Gang Ren; Gang Zhou; Cunfang Zhang; Ling Wang; Zhiying Zhang
Myostatin negatively regulates skeletal muscle growth. It was found that active immunization with myostatin-specific vaccine blocked myostatin function in vivo, which resulted in increase of body weight and muscle composition in mice. However, traditional vaccine and its administration method are expensive and laborious. In this study, we investigated the possibility of using heat-killed whole recombinant yeast Saccharomyces cerevisiae vaccine to modulate myostatin function in mice. The CDS of myostatin was obtained from a pig genome by PCR and subcloned into a yeast expression vector, which was driven by a copper-inducible promoter. Expression of recombinant myostatin was induced by CuSO(4) and confirmed by western blot. We vaccinated mice by oral feeding and subcutaneous injection as comparison. We found that oral feeding resulted in the similar effective immune response than injection, which was measured by the presence of myostatin-specific antibodies in mouse serum. Interestingly, animals vaccinated by both methods demonstrated enhanced growth performance compared to control. All animals were healthy looking throughout the course of experiment, suggesting that whole recombinant yeast vaccine is nontoxic and therefore safe to use. Given the simplicity of its nature, heat-killed myostatin-specific whole recombinant yeast vaccine holds a promise to treat human muscle-wasting diseases in the future.
PLOS ONE | 2013
Ling Wang; Juan Lin; Tingting Zhang; Kun Xu; Chonghua Ren; Zhiying Zhang
Zinc finger nucleases (ZFNs) have been successfully used for genome modification in various cell types and species. However, construction of an effective ZFN remained challenging. Previous studies all focused on obtaining specific zinc finger proteins (ZFPs) first via bacterial 2-hybrid approach, and then fusing selected ZFPs to FokI nuclease domain. These assembled ZFNs have high rate of failing to cleave target sites in vivo. In this study, we developed a simultaneous screening and validation system to obtain effective ZFNs directly in yeast AH109. This system is based on Gal4 reporter system carrying a unique intermediate reporter plasmid with two 30-bp Gal4 homology arms and a ZFN target site. DNA double strand breaks introduced on target sequence by ZFNs were repaired by single strand annealing (SSA) mechanism, and the restored Gal4 drove reporter genes expression. Taking the advantage of OPEN (Oligomerized Pool ENgineering) selection, we constructed 3 randomized ZFNs libraries and 9 reporter strains for each target gene. We tested this system by taking goat α s1-casein as target gene following three-step selection. Consequently, 3 efficient pairs of ZFNs were obtained from positive colonies on selective medium. The ZFNs achieved a 15.9% disruption frequency in goat mammary epithelial cells. In conclusion, we created a novel system to obtain effective ZFNs directly with simultaneous screening and validation.
PLOS ONE | 2013
Zhiqiang Zhang; Duo Li; Huarong Xu; Ying Xin; Tingting Zhang; Lixia Ma; Xin Wang; Zhilong Chen; Zhiying Zhang
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.
Vaccine | 2013
Meron G. Kiflmariam; Hanjiang Yang; Zhiying Zhang
DNA vaccination has caught the attention of many for triggering humoral as well as cellular immune responses. And delivering DNA into the antigen presenting cells (APCs) in order to induce efficient immunoresponse has become the backbone of this field. It has been confirmed that Saccharomyces cerevisiae, though non-pathogenic, is being engulfed by the dendritic cells and macrophages and delivers not only proteins, but also DNA materials (already confirmed in vitro). In this research, S. cerevisiae is used to deliver green fluorescent protein (GFP) reporter gene controlled under cytomegalovirus (CMV) promoter in living organism (mice). The recombinant yeast, transfected with the plasmid containing the GFP gene, was heat killed and orally administered to mice. After 60 h of yeast administration, mice were sacrificed and intestine was separated, washed and frozen in liquid nitrogen. Tissues were cut at the size of 10 μm using Cryostat machine, and GFP expression was successfully detected under a fluorescence microscope. After 45 days Western blot was able to detect GFP antibody in the blood of mice. These results imply that S. cerevisiae, being non-pathogenic, cheap, and easy to culture could be a good candidate to deliver DNA materials to the immune cells for vaccination.
BMC Biotechnology | 2012
Tingting Zhang; Lin Sun; Ying Xin; Lixia Ma; Youyou Zhang; Xin Wang; Kun Xu; Chonghua Ren; Cunfang Zhang; Zhilong Chen; Hanjiang Yang; Zhiying Zhang
BackgroundYeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products.ResultsWe developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice.ConclusionsEstablishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.
PLOS ONE | 2013
Ling Wang; Kun Xu; Juan Lin; Simin Shao; Tingting Zhang; Huarong Xu; Zehui Wei; Zhiying Zhang
Yeast two-hybrid (Y2H) methods are powerful tools for detecting protein–protein interactions. The traditional Y2H method has been widely applied to screen novel protein interactions since it was established two decades ago. The high false-positive rate of the traditional method drove the development of modified Y2H systems. Here, we describe a novel Y2H system using zinc-finger nucleases (ZFNs). ZFNs contain two functional domains, a zinc-finger DNA-binding domain (ZFP) and a non-specific nuclease domain (FokI). In this system, the bait is expressed as a fusion protein with a specific ZFP, and the prey is fused to the FokI. A reporter vector is designed such that the ZFN target site disrupts the Gal4 open reading frame. By transforming the three plasmids into a yeast strain (AH109), the interaction between the bait and prey proteins reconstitutes ZFN function and generates the double-strand break (DSB) on its target site. The DNA DSB repair restores Gal4 function, which activates the expression of the four reporter genes. We used p53-SV40LT interacting proteins to prove the concept. In addition, 80% positive rate was observed in a cDNA screening test against WDSV orfA protein. Our results strongly suggested that this Y2H system could increase screening reliability and reproducibility, and provide a novel approach for interactomics research.
PLOS ONE | 2016
Tao Zhang; Yajun Yin; Huan Liu; Weili Du; Chonghua Ren; Ling Wang; Hongzhao Lu; Zhiying Zhang
CRISPR/Cas9 system has become a new versatile technology for genome engineering in various species. To achieve targeted modifications at the same site in both human and mice genomes by a CRISPR/Cas9 nuclease, we designed two target sites in conserved regions of vitamin D receptor (VDR) gene, which cover more than 17 kb of chromosome region depending on the species. We first validated the efficacy of single sgRNA mediated gene specific modifications were 36% and 31% in HEK293T cells. Concurrently, targeted of the intervening genomic segments deletions were generated in chromosomes when two sgRNAs worked simultaneously. The large genomic DNA segments up to 23.4 Kb could be precisely deleted in human chromosomes. Subsequently, Cas9 mRNA and sgRNAs targeting VDRT1 and VDRT2 were co-microinjected into one-cell-stage embryos of C57BL/6 mice. Verified by T7E1 assay and DNA sequencing analysis, 12 mice showed VDR targeted disruption and 8 of which were biallelic knock-out, which demonstrated obvious phenotype of hair thinning. Furthermore, expression changes of Vitamin D metabolism genes in VDR-/-mice were detected. These results indicated that CRISPR/Cas9 mediated knock-out of VDR diminished its gene function in vivo. The off-target effects of CRISPR/Cas9 in VDR-/- founder mice were analyzed. Our results showed that CRISPR/Cas9 system could be employed to target the same sites in different species, when sgRNAs are designed within conserved regions, and therefore will be critically important and applicable for human disease model.
African Journal of Biotechnology | 2011
Hanjiang Yang; Tingting Zhang; Kun Xu; Jie Lei; Ling Wang; Zhanwei Li; Zhiying Zhang
Purified recombinant protein has been routinely used to immunize rabbits to produce polyclonal antibodies. The process of the purification of recombinant proteins from bacterial inclusion bodies is both labor intensive and time consuming. To determine whether whole inclusion bodies can be used as antigen in polyclonal antibody production, we amplified Gallus gallus phospholipase A2 gene by RTPCR, fused with glutathione-S-transferase (GST), and expressed recombinant Escherichia coli strain Rosseta (DE3) in the form of inclusion bodies. The inclusion bodies isolated from the bacteria cells were directly injected into rabbits and hens at 300 µg dose four times. Western blot was performed to detect antibodies in serum and in egg yolk, which revealed strong immunoreactions. The results suggested that using recombinant protein-containing inclusion bodies as antigen is a novel and convenient method to immunize animals for polyclonal antibody production.
Vaccine | 2016
Zhongtian Liu; Gang Zhou; Chonghua Ren; Kun Xu; Qiang Yan; Xinyi Li; Tingting Zhang; Zhiying Zhang
Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice.