Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiyong Ding is active.

Publication


Featured researches published by Zhiyong Ding.


Nature Cell Biology | 2007

The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis

Jiyong Liang; Shan H. Shao; Zhi Xiang Xu; Bryan T. Hennessy; Zhiyong Ding; Michelle D. Larrea; Seiji Kondo; Dan Dumont; Jordan U. Gutterman; Cheryl L. Walker; Joyce M. Slingerland; Gordon B. Mills

Nutrients and bioenergetics are prerequisites for proliferation and survival of mammalian cells. We present evidence that the cyclin-dependent kinase inhibitor p27Kip1, is phosphorylated at Thr 198 downstream of the Peutz-Jeghers syndrome protein–AMP-activated protein kinase (LKB1–AMPK) energy-sensing pathway, thereby increasing p27 stability and directly linking sensing of nutrient concentration and bioenergetics to cell-cycle progression. Ectopic expression of wild-type and phosphomimetic Thr 198 to Asp 198 (T198D), but not unstable Thr 198 to Ala 198 (p27T198A) is sufficient to induce autophagy. Under stress conditions that activate the LKB1–AMPK pathway with subsequent induction of autophagy, p27 knockdown results in apoptosis. Thus LKB1–AMPK pathway-dependent phosphorylation of p27 at Thr 198 stabilizes p27 and permits cells to survive growth factor withdrawal and metabolic stress through autophagy. This may contribute to tumour-cell survival under conditions of growth factor deprivation, disrupted nutrient and energy metabolism, or during stress of chemotherapy.


Oncogene | 2016

Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma.

Lijun Zhou; Xian-De Liu; Mianen Sun; Xuesong Zhang; Peter German; Shanshan Bai; Zhiyong Ding; Nizar M. Tannir; Christopher G. Wood; Surena F. Matin; Jose A. Karam; Pheroze Tamboli; Kanishka Sircar; Priya Rao; Erinn B. Rankin; Douglas Laird; Anh Hoang; Cheryl L. Walker; Amato J. Giaccia; Eric Jonasch

Antiangiogenic therapy resistance occurs frequently in patients with metastatic renal cell carcinoma (RCC). The purpose of this study was to understand the mechanism of resistance to sunitinib, an antiangiogenic small molecule, and to exploit this mechanism therapeutically. We hypothesized that sunitinib-induced upregulation of the prometastatic MET and AXL receptors is associated with resistance to sunitinib and with more aggressive tumor behavior. In the present study, tissue microarrays containing sunitinib-treated and untreated RCC tissues were stained with MET and AXL antibodies. The low malignant RCC cell line 786-O was chronically treated with sunitinib and assayed for AXL, MET, epithelial–mesenchymal transition (EMT) protein expression and activation. Co-culture experiments were used to examine the effect of sunitinib pretreatment on endothelial cell growth. The effects of AXL and MET were evaluated in various cell-based models by short hairpin RNA or inhibition by cabozantinib, the multi-tyrosine kinases inhibitor that targets vascular endothelial growth factor receptor, MET and AXL. Xenograft mouse models tested the ability of cabozantinib to rescue sunitinib resistance. We demonstrated that increased AXL and MET expression was associated with inferior clinical outcome in patients. Chronic sunitinib treatment of RCC cell lines activated both AXL and MET, induced EMT-associated gene expression changes, including upregulation of Snail and β-catenin, and increased cell migration and invasion. Pretreatment with sunitinib enhanced angiogenesis in 786-0/human umbilical vein endothelial cell co-culture models. The suppression of AXL or MET expression and the inhibition of AXL and MET activation using cabozantinib both impaired chronic sunitinib treatment-induced prometastatic behavior in cell culture and rescued acquired resistance to sunitinib in xenograft models. In summary, chronic sunitinib treatment induces the activation of AXL and MET signaling and promotes prometastatic behavior and angiogenesis. The inhibition of AXL and MET activity may overcome resistance induced by prolonged sunitinib therapy in metastatic RCC.


Oncogene | 2011

Vimentin is a novel AKT1 target mediating motility and invasion

Quansheng Zhu; Kevin P. Rosenblatt; Kai Lieh Huang; Guy Lahat; Reynolds Brobey; Svetlana Bolshakov; Theresa Nguyen; Zhiyong Ding; Roman Belousov; Katelynn Bill; Alexander J. Lazar; Adam P. Dicker; Gordon B. Mills; Mien Chie Hung; Dina Lev

The PI3K/AKT signaling pathway is aberrant in a wide variety of cancers. Downstream effectors of AKT are involved in survival, growth and metabolic-related pathways. In contrast, contradictory data relating to AKT effects on cell motility and invasion, crucial prometastatic processes, have been reported pointing to a potential cell type and isoform type-specific AKT-driven function. By implication, study of AKT signaling should optimally be conducted in an appropriate intracellular environment. Prognosis in soft-tissue sarcoma (STS), the aggressive malignancies of mesenchymal origin, is poor, reflecting our modest ability to control metastasis, an effort hampered by lack of insight into molecular mechanisms driving STS progression and dissemination. We examined the impact of the cancer progression-relevant AKT pathway on the mesenchymal tumor cell internal milieu. We demonstrate that AKT1 activation induces STS cell motility and invasiveness at least partially through a novel interaction with the intermediate filament vimentin (Vim). The binding of AKT (tail region) to Vim (head region) results in Vim Ser39 phosphorylation enhancing the ability of Vim to induce motility and invasion while protecting Vim from caspase-induced proteolysis. Moreover, vimentin phosphorylation was shown to enhance tumor and metastasis growth in vivo. Insights into this mesenchymal-related molecular mechanism may facilitate the development of critically lacking therapeutic options for these devastating malignancies.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners

Zhiyong Ding; Jiyong Liang; Yiling Lu; Qinghua Yu; Zhou Songyang; Shiaw Yih Lin; Gordon B. Mills

We developed a retrovirus-based protein-fragment complementation assay (RePCA) screen to identify protein–protein interactions in mammalian cells. In RePCA, bait protein is fused to one fragment of a rationally dissected fluorescent protein, such as GFP, intensely fluorescent protein, or red fluorescent protein. The second, complementary fragment of the fluorescent protein is fused to an endogenous protein by in-frame exon traps in the enhanced retroviral mutagen vector. An interaction between bait and host protein (prey) places the two parts of the fluorescent molecule in proximity, resulting in reconstitution of fluorescence. By using RePCA, we identified a series of 24 potential interaction partners or substrates of the serine/threonine protein kinase AKT1. We confirm that α-actinin 4 (ACTN4) interacts physically and functionally with AKT1. siRNA-mediated ACTN4 silencing down-regulates AKT phosphorylation, blocks AKT translocation to the membrane, increases p27Kip1 levels, and inhibits cell proliferation. Thus, ACTN4 is a critical regulator of AKT1 localization and function.


Nature Methods | 2015

In silico prediction of physical protein interactions and characterization of interactome orphans

Max Kotlyar; Chiara Pastrello; Flavia Pivetta; Alessandra Lo Sardo; Christian Cumbaa; Han Li; Taline Naranian; Yun Niu; Zhiyong Ding; Fatemeh Vafaee; Fiona Broackes-Carter; Julia Petschnigg; Gordon B. Mills; Andrea Jurisicova; Igor Stagljar; Roberta Maestro; Igor Jurisica

Protein-protein interactions (PPIs) are useful for understanding signaling cascades, predicting protein function, associating proteins with disease and fathoming drug mechanism of action. Currently, only ∼10% of human PPIs may be known, and about one-third of human proteins have no known interactions. We introduce FpClass, a data mining–based method for proteome-wide PPI prediction. At an estimated false discovery rate of 60%, we predicted 250,498 PPIs among 10,531 human proteins; 10,647 PPIs involved 1,089 proteins without known interactions. We experimentally tested 233 high- and medium-confidence predictions and validated 137 interactions, including seven novel putative interactors of the tumor suppressor p53. Compared to previous PPI prediction methods, FpClass achieved better agreement with experimentally detected PPIs. We provide an online database of annotated PPI predictions (http://ophid.utoronto.ca/fpclass/) and the prediction software (http://www.cs.utoronto.ca/~juris/data/fpclass/).


Cancer immunology research | 2015

Resistance to Antiangiogenic Therapy Is Associated with an Immunosuppressive Tumor Microenvironment in Metastatic Renal Cell Carcinoma

Xian-De Liu; Anh Hoang; Lijun Zhou; Sarathi Kalra; Alper Yetil; Mianen Sun; Zhiyong Ding; Xuesong Zhang; Shanshan Bai; Peter German; Pheroze Tamboli; Priya Rao; Jose A. Karam; Christopher G. Wood; Surena F. Matin; Amado J. Zurita; Axel Bex; Arjan W. Griffioen; Jianjun Gao; Padmanee Sharma; Nizar M. Tannir; Kanishka Sircar; Eric Jonasch

Therapeutic PD-1/PD-L1 blockade requires preexisting tumor-infiltrating T cells. In a subset of metastatic RCC patients, antiangiogenic therapy increased T-cell infiltration and PD-L1 upregulation, increasing the likelihood that they may uniquely benefit from combination checkpoint and antiangiogenic therapy. Renal cell carcinoma (RCC) is an immunogenic and proangiogenic cancer, and antiangiogenic therapy is the current mainstay of treatment. Patients with RCC develop innate or adaptive resistance to antiangiogenic therapy. There is a need to identify biomarkers that predict therapeutic resistance and guide combination therapy. We assessed the interaction between antiangiogenic therapy and the tumor immune microenvironment and determined their impact on clinical outcome. We found that antiangiogenic therapy–treated RCC primary tumors showed increased infiltration of CD4+ and CD8+ T lymphocytes, which was inversely related to patient overall survival and progression-free survival. Furthermore, specimens from patients treated with antiangiogenic therapy showed higher infiltration of CD4+FOXP3+ regulatory T cells and enhanced expression of checkpoint ligand programed death-ligand 1 (PD-L1). Both immunosuppressive features were correlated with T-lymphocyte infiltration and were negatively related to patient survival. Treatment of RCC cell lines and RCC xenografts in immunodeficient mice with sunitinib also increased tumor PD-L1 expression. Results from this study indicate that antiangiogenic treatment may both positively and negatively regulate the tumor immune microenvironment. These findings generate hypotheses on resistance mechanisms to antiangiogenic therapy and will guide the development of combination therapy with PD-1/PD-L1–blocking agents. Cancer Immunol Res; 3(9); 1017–29. ©2015 AACR.


Nature Communications | 2015

Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance.

Jiyong Liang; Zhi Xiang Xu; Zhiyong Ding; Yiling Lu; Qinghua Yu; Kaitlin D. Werle; Ge Zhou; Yun Yong Park; Guang Peng; Michael J. Gambello; Gordon B. Mills

AMP-activated protein kinase (AMPK) plays a central role in cellular energy sensing and bioenergetics. However, the role of AMPK in surveillance of mitochondrial damage and induction of mitophagy remains unclear. We demonstrate herein that AMPK is required for efficient mitophagy. Mitochondrial damage induces a physical association of AMPK with ATG16-ATG5-12 and an AMPK-dependent recruitment of the VPS34 and ATG16 complexes with the mitochondria. Targeting AMPK to the mitochondria is both sufficient to induce mitophagy and to promote cell survival. Recruitment of AMPK to the mitochondria requires N-myristoylation of AMPKβ by the type-I N-myristoyltransferase 1 (NMT1). Our data support a spatiotemporal model wherein recruitment of AMPK in association with components of the VPS34 and ATG16 complex to damaged mitochondria regulates selective mitophagy to maintain cancer cell viability.


Journal of Genetics and Genomics | 2015

The PI3K/AKT Pathway and Renal Cell Carcinoma

Huifang Guo; Peter German; Shanshan Bai; Sean Barnes; Wei Guo; Xiangjie Qi; Hongxiang Lou; Jiyong Liang; Eric Jonasch; Gordon B. Mills; Zhiyong Ding

The phosphatidylinositol 3 kinase (PI3K)/AKT pathway is genetically targeted in more pathway components and in more tumor types than any other growth factor signaling pathway, and thus is frequently activated as a cancer driver. More importantly, the PI3K/AKT pathway is composed of multiple bifurcating and converging kinase cascades, providing many potential targets for cancer therapy. Renal cell carcinoma (RCC) is a high-risk and high-mortality cancer that is notoriously resistant to traditional chemotherapies or radiotherapies. The PI3K/AKT pathway is modestly mutated but highly activated in RCC, representing a promising drug target. Indeed, PI3K pathway inhibitors of the rapalog family are approved for use in RCC. Recent large-scale integrated analyses of a large number of patients have provided a molecular basis for RCC, reiterating the critical role of the PI3K/AKT pathway in this cancer. In this review, we summarize the genetic alterations of the PI3K/AKT pathway in RCC as indicated in the latest large-scale genome sequencing data, as well as treatments for RCC that target the aberrant activated PI3K/AKT pathway.


EMBO Reports | 2012

AKT-dependent phosphorylation of Niban regulates nucleophosmin- and MDM2-mediated p53 stability and cell apoptosis

Haitao Ji; Zhiyong Ding; David H. Hawke; Dongming Xing; Bing-Hua Jiang; Gordon B. Mills; Zhimin Lu

Although Niban is highly expressed in human cancer cells, the cellular functions of Niban remain largely unknown. We demonstrate here that ultraviolet irradiation induces phosphorylation of Niban at S602 by AKT, which increases the association of Niban with nucleophosmin and disassociation of nucleophosmin from the MDM2 complex. This leads to the promotion of MDM2–p53 interaction and subsequent p53 degradation, thereby providing an antiapoptotic effect. Conversely, depletion of or deficiency in Niban expression promotes stabilization of p53 with increased cell apoptosis. Our findings illustrate a pivotal role for AKT‐mediated phosphorylation of Niban in protecting cells from genotoxic stress–induced cell apoptosis.


Oncogene | 2014

Site-specific activation of AKT protects cells from death induced by glucose deprivation

Meng Gao; Jiyong Liang; Yiling Lu; Huifang Guo; Peter German; Shanshan Bai; Eric Jonasch; Xingsheng Yang; Gordon B. Mills; Zhiyong Ding

The serine/threonine kinase AKT is a key mediator of cancer cell survival. We demonstrate that transient glucose deprivation modestly induces AKT phosphorylation at both Thr308 and Ser473. In contrast, prolonged glucose deprivation induces selective AKTThr308 phosphorylation and phosphorylation of a distinct subset of AKT downstream targets leading to cell survival under metabolic stress. Glucose-deprivation-induced AKTThr308 phosphorylation is dependent on PDK1 and PI3K but not EGF receptor or IGF1R. Prolonged glucose deprivation induces the formation of a complex of AKT, PDK1 and the GRP78 chaperone protein, directing phosphorylation of AKTThr308 but not AKTSer473. Our results reveal a novel mechanism of AKT activation under prolonged glucose deprivation that protects cells from metabolic stress. The selective activation of AKTThr308 phosphorylation that occurs during prolonged nutrient deprivation may provide an unexpected opportunity for the development and implementation of drugs targeting cell metabolism and aberrant AKT signaling.

Collaboration


Dive into the Zhiyong Ding's collaboration.

Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric Jonasch

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shanshan Bai

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peter German

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mianen Sun

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xian-De Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jiyong Liang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lijun Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nizar M. Tannir

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yiling Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge