Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiyong Qian is active.

Publication


Featured researches published by Zhiyong Qian.


International Journal of Pharmaceutics | 2009

Biodegradable poly(ɛ-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system

Xiawei Wei; Changyang Gong; Maling Gou; ShaoZhi Fu; QingFa Guo; Shuai Shi; Feng Luo; Gang Guo; Liyan Qiu; Zhiyong Qian

Poly(epsilon-caprolactone)-poly(ethylene glycol) (PCL-PEG) copolymers are important synthetic biomedical materials with amphiphilicity, controlled biodegradability, and great biocompatibility. They have great potential application in the fields of nanotechnology, tissue engineering, pharmaceutics, and medicinal chemistry. This review introduced several aspects of PCL-PEG copolymers, including synthetic chemistry, PCL-PEG micro/nanoparticles, PCL-PEG hydrogels, and physicochemical and toxicological properties.


Nanoscale | 2011

Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

Maling Gou; Ke Men; HuaShan Shi; MingLi Xiang; Juan Zhang; Jia Song; JianLin Long; Yang Wan; Feng Luo; Xia Zhao; Zhiyong Qian

Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 ± 0.011) with a mean particle size of 27.3 ± 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 ± 1.02%, and drug loading of 12.95 ± 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t(1/2) and AUC of curcumin in vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesis in vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cells in vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg(-1) curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.


International Journal of Pharmaceutics | 2009

Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel

Changyang Gong; Shuai Shi; PengWei Dong; Bing Kan; Maling Gou; Xianhuo Wang; XingYi Li; Feng Luo; Xia Zhao; Yuquan Wei; Zhiyong Qian

In this work, a series of biodegradable triblock poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) copolymers were successfully synthesized by ring-opening copolymerization, and were characterized by (1)H NMR, FT-IR, GPC, and DSC. Aqueous solutions of PECE copolymers underwent thermosensitive sol-gel-sol transition as temperature increases when the concentration was above corresponding critical gel concentration (CGC). Sol-gel-sol phase transition diagrams were recorded using test tube inverting method, which depended on hydrophilic/hydrophobic balance in macromolecular structure, as well as some other factors, including topology of triblock copolymers and solution composition of the hydrogel. As a result, the sol-gel-sol transition temperature range could be varied, which might be very useful for its application as injectable drug delivery systems. The in vivo gel formation and degradation behavior was conducted by injecting aqueous PECE solution into KunMing mice subcutaneously. In vitro degradation behavior, in vitro drug release behavior, and cytotoxicity were also investigated in this paper. Therefore, owing to great thermosensitivity and biodegradability of these copolymers, PECE hydrogel is believed to be promising for in situ gel-forming controlled drug delivery system.


Biomaterials | 2013

A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing.

Changyang Gong; Qinjie Wu; YuJun Wang; DouDou Zhang; Feng Luo; Xia Zhao; Yuquan Wei; Zhiyong Qian

A biodegradable in situ gel-forming controlled drug delivery system composed of curcumin loaded micelles and thermosensitive hydrogel was prepared and applied for cutaneous wound repair. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent. Due to its high hydrophobicity, curcumin was encapsulated in polymeric micelles (Cur-M) with high drug loading and encapsulation efficiency. Cur-M loaded thermosensitive hydrogel (Cur-M-H) was prepared and applied as wound dressing to enhance the cutaneous wound healing. Cur-M-H was a free-flowing sol at ambient temperature and instantly converted into a non-flowing gel at body temperature. In vitro studies suggested that Cur-M-H exhibited well tissue adhesiveness and could release curcumin in an extended period. Furthermore, linear incision and full-thickness excision wound models were employed to evaluate the in vivo wound healing activity of Cur-M-H. In incision model, Cur-M-H-treated group showed higher tensile strength and thicker epidermis. In excision model, Cur-M-H group exhibited enhancement of wound closure. Besides, in both models, Cur-M-H-treated groups showed higher collagen content, better granulation, higher wound maturity, dramatic decrease in superoxide dismutase, and slight increase in catalase. Histopathologic examination also implied that Cur-M-H could enhance cutaneous wound repair. In conclusion, biodegradable Cur-M-H composite might have great application for wound healing.


Biomaterials | 2013

Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles.

Changyang Gong; Senyi Deng; Qinjie Wu; Mingli Xiang; Xiawei Wei; Ling Li; Xiang Gao; BiLan Wang; Lu Sun; Yishan Chen; Yuchen Li; Lei Liu; Zhiyong Qian; Yuquan Wei

For developing aqueous formulation and improving anti-tumor activity of curcumin (Cur), we prepared Cur encapsulated MPEG-PCL micelles by solid dispersion method without using any surfactants or toxic organic solvent. Cur micelles could be lyophilized into powder form without any cryoprotector or excipient, and the re-dissolved Cur micelles are homogenous and stable. Molecular modeling study suggested that Cur tended to interact with PCL serving as a core embraced by PEG as a shell. After Cur was encapsulated into polymeric micelles, cytotoxicity and cellular uptake were both increased. Cur micelles had a stronger inhibitory effect on proliferation, migration, invasion, and tube formation of HUVECs than free Cur. Besides, Cur micelles showed a sustained in vitro release behavior and slow extravasation from blood vessels in transgenic zebrafish model. Embryonic angiogenesis and tumor-induced angiogenesis were both dramatically inhibited by Cur micelles in transgenic zebrafish model. Furthermore, Cur micelles were more effective in inhibiting tumor growth and prolonged survival in both subcutaneous and pulmonary metastatic LL/2 tumor models. In pharmacokinetic and tissue distribution studies, Cur micelles showed higher concentration and longer retention time in plasma and tumors. Our findings suggested that Cur micelles may have promising applications in pulmonary carcinoma therapy.


Acta Biomaterialia | 2009

Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior

Changyang Gong; Shuai Shi; Lan Wu; Maling Gou; QinQin Yin; QingFa Guo; PengWei Dong; Fan Zhang; Feng Luo; Xia Zhao; Yuquan Wei; Zhiyong Qian

In this work, a biodegradable and injectable in situ gel-forming controlled drug delivery system based on thermosensitive poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) hydrogel was studied. The prepared PCEC hydrogel undergoes temperature-dependent sol-gel-sol transition, which is a flowing sol at ambient temperature and turns into a non-flowing gel at around physiological body temperature. Furthermore, the sol-gel phase transition mechanism was investigated using (13)C-nuclear magnetic resonance imaging and a laser diffraction particle size analyzer. The in vitro release behaviors of several model drugs, including a hydrophilic small-molecule drug, a hydrophobic small-molecule drug and a macromolecular protein drug, from PCEC hydrogel were also investigated in detail. The results showed that the model drugs could be released from the PCEC hydrogel system over a sustained period. In addition, an anaesthesia assay was conducted using the tail flick latency (TFL) test to evaluate the in vivo controlled drug delivery effect of the PCEC hydrogel system. In the TFL assay, a lidocaine-loaded PCEC hydrogel produced significantly longer-lasting local anaesthetic effects compared with lidocaine aqueous solution at the same dose. Therefore, PCEC hydrogel is promising for use as an injectable local drug delivery system.


Biomaterials | 2012

Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration.

ShaoZhi Fu; PeiYan Ni; BeiYu Wang; BingYang Chu; Lan Zheng; Feng Luo; Jing-Cong Luo; Zhiyong Qian

A novel three-component biomimetic hydrogel composite was successfully prepared in this study, which was composed of triblock PEG-PCL-PEG copolymer (PECE), collagen and nano-hydroxyapatite (n-HA). The microstructure and thermo-responsibility of the obtained PECE/Collagen/n-HA hydrogel composite were characterized. Scanning electronic microscopy (SEM) showed that the composite exhibited an interconnected porous structure. The rheological analysis revealed that the composite existed good thermo-sensitivity. In vivo biocompatibility and biodegradability was investigated by implanting the hydrogel composite in muscle pouches of rats for 3, 7, and 14 days. Moreover, the osteogenic capacity was evaluated by means of implanting the composite material in cranial defects of New Zealand White rabbits for 4, 12 and 20 weeks. In vivo performances confirmed that the biodegradable PECE/Collagen/n-HA hydrogel composite had good biocompatibility and better performance in guided bone regeneration than the self-healing process. Thus the thermal-response PECE/Collagen/n-HA hydrogel composite had the great potential in bone tissue engineering.


BMC Biotechnology | 2008

Preparation of alginate coated chitosan microparticles for vaccine delivery

XingYi Li; XiangYe Kong; Shuai Shi; XiuLing Zheng; Gang Guo; Yuquan Wei; Zhiyong Qian

BackgroundAbsorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine.ResultsThe prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE) of 60% and loading capacity (LC) of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv) was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM), the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR.ConclusionThe prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan microparticles and could effectively protect model protein (BSA) from degradation in acidic medium in vitro for at least 2 h. In all, the prepared alginate coated chitosan microparticles might be an effective vehicle for oral administration of antigens.


International Journal of Pharmaceutics | 2013

Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis

Lei Liu; Lu Sun; Qinjie Wu; Wenhao Guo; Ling Li; Yishan Chen; Yuchen Li; Changyang Gong; Zhiyong Qian; Yuquan Wei

This work aims to develop curcumin (Cur) loaded biodegradable self-assembled polymeric micelles (Cur-M) to overcome poor water solubility of Cur and to meet the requirement of intravenous administration. Cur-M were prepared by solid dispersion method, which was simple and easy to scale up. Cur-M had a small particle size of 28.2 ± 1.8 nm and polydisperse index (PDI) of 0.136 ± 0.050, and drug loading and encapsulation efficiency of Cur-M were 14.84 ± 0.11% and 98.91 ± 0.70%, respectively. Besides, in vitro release profile showed a significant difference between rapid release of free Cur and much slower and sustained release of Cur-M. Cytotoxicity study showed that the encapsulated Cur remained its potent anti-tumor effect. Furthermore, Cur-M were more effective in inhibiting tumor growth and spontaneous pulmonary metastasis in subcutaneous 4T1 breast tumor model, and prolonged survival of tumor-bearing mice. In addition, immunofluorescent and immunohistochemical studies also showed that tumors of Cur-M-treated mice had more apoptosis cells, fewer microvessels, and fewer proliferation-positive cells. In conclusion, polymeric micelles encapsulating Cur were developed with enhanced anti-tumor and anti-metastasis activity on breast tumor, and Cur-M is excellent water-based formulation of Cur which may serve as a candidate for breast cancer therapy.


International Journal of Pharmaceutics | 2008

A novel injectable local hydrophobic drug delivery system: Biodegradable nanoparticles in thermo-sensitive hydrogel.

Maling Gou; XingYi Li; Mei Dai; Changyang Gong; Xianhuo Wang; Yao Xie; Hongxin Deng; Lijuan Chen; Xia Zhao; Zhiyong Qian; Yuquan Wei

In this article, a novel local hydrophobic drug delivery system: nanoparticles in thermo-sensitive hydrogel, was demonstrated. First, honokiol, as a model hydrophobic drug, loaded poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) nanoparticles were prepared by emulsion solvent evaporation method, and then were incorporated into thermo-sensitive F127 hydrous matrix. The obtained injectable hydrophobic drug delivery system can act as a depot for sustained release of honokiol in situ. The lower critical solution temperature (LCST) of the composite matrix increases with increase in the mass of incorporated nanoparticles, or with decrease in the amount of residual organic solvent in the system. Honokiol release profile in vitro was studied, and the results showed that honokiol could be sustained released from the system. The described injectable drug delivery system might have great potential application for local delivery of hydrophobic drugs such as honokiol.

Collaboration


Dive into the Zhiyong Qian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge