Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhiyong Wei is active.

Publication


Featured researches published by Zhiyong Wei.


Journal of Applied Physics | 2014

Mode dependent lattice thermal conductivity of single layer graphene

Zhiyong Wei; Juekuan Yang; Kedong Bi; Yunfei Chen

Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000 K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.


Applied Physics Letters | 2014

Phonon mean free path of graphite along the c-axis

Zhiyong Wei; Juekuan Yang; Weiyu Chen; Kedong Bi; Deyu Li; Yunfei Chen

Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000 nm contribute ∼80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100 nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.


Journal of Applied Physics | 2015

Phonon transport properties in pillared silicon film

Zhiyong Wei; Juekuan Yang; Kedong Bi; Yunfei Chen

The phonon transport property of pillared silicon film is systematically investigated by molecular dynamics simulation and lattice dynamics calculation. It is found that the thermal conductivity can be reduced to as low as 28.6% of the conductivity of plain ones. Although the reduced thermal conductivity can be explained qualitatively by increased surface roughness, our calculations show that the pillars modify the phonon dispersion relation and reduce the phonon group velocity due to the local resonance effects. Furthermore, by analyzing the participation ratio spectra, it is shown that the pillars reduce the mode participation ratio over the whole range of frequency. We found that the mode localization around the pillars is another important factor to reduce the thermal conductivity of pillared film. The present investigations indicate that the pillared film may have potential application in thermoelectric energy conversion.


Nano Letters | 2017

Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires

Qian Zhang; Zhiguang Cui; Zhiyong Wei; Siang Yee Chang; Lin Yang; Yang Zhao; Yang Yang; Zhe Guan; Youfei Jiang; Jason D. Fowlkes; Juekuan Yang; Dongyan Xu; Yunfei Chen; Terry T. Xu; Deyu Li

Nanowires of complex morphologies, such as kinked wires, have been recently synthesized and demonstrated for novel devices and applications. However, the effects of these morphologies on thermal transport have not been well studied. Through systematic experimental measurements, we show that single-crystalline, defect-free kinks in boron carbide nanowires can pose a thermal resistance up to ∼30 times larger than that of a straight wire segment of equivalent length. Analysis suggests that this pronounced resistance can be attributed to the combined effects of backscattering of highly focused phonons and required mode conversion at the kink. Interestingly, it is also found that instead of posing resistance, structural defects in the kink can actually assist phonon transport through the kink and reduce its resistance. Given the common kink-like wire morphology in nanoelectronic devices and required low thermal conductivity for thermoelectric devices, these findings have important implications in precise thermal management of electronic devices and thermoelectrics.


AIP Advances | 2016

Anisotropic thermal transport property of defect-free GaN

Wenjing Ju; Zhongyuan Zhou; Zhiyong Wei

Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly result from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to th...


Journal of Applied Physics | 2017

Axial tensile strain effects on the contact thermal conductance between cross contacted single-walled carbon nanotubes

Weiyu Chen; Juekuan Yang; Zhiyong Wei; Chenhan Liu; Kedong Bi; Yunfei Chen

The axial strain effects on the contact thermal conductance between two cross contacted single walled carbon nanotubes (SWCNTs) are assessed using nonequilibrium molecular dynamics simulation. The results show that the contact thermal conductance can be decreased by ∼44% as the axial strain increases from 0 to 10%. The calculated vibrational density of state reveals that the enhanced phonon scattering resulting from the blue shift of the low frequency phonon is the main factor leading to the reduction of the contact thermal conductance. We also studied the effect of the defects caused by hydrogenation and vacancy in SWCNTs on the contact thermal conductance and found that this effect can be neglected.


Journal of Physics D | 2015

Cross-plane phonon transport properties of molybdenum disulphide

Zhiyong Wei; Biao Liu; Chenhan Liu; Kedong Bi; Juekuan Yang; Yunfei Chen

The cross-plane thermal conductivity of a molybdenum disulphide (MoS2) film is calculated from the nonequilibrium molecular dynamics simulation. The results show that, unlike graphite which has a slow convergent speed, the thermal conductivity of MoS2 tends to a convergent value when the film thickness is beyond about 40 nm. We also construct the cross-plane thermal conductivity of bulk MoS2 as an accumulation function of the phonon mean free path (MFP). It is found that phonons with MFPs below 40 nm contribute ~90% of the MoS2 cross-plane thermal conductivity at room temperature. This critical size of the phonon MFP is about two orders of magnitude smaller than that of graphite. Further calculations show that the shorter cross-plane phonon MFPs in bulk MoS2 may result from the lower phonon cut-off frequency and the mismatch of phonon density of state between Mo and S due to the mass difference. The phonon transport properties obtained would be helpful in the design and optimization of MoS2-based devices.


AIP Advances | 2015

The contact area dependent interfacial thermal conductance

Chenhan Liu; Zhiyong Wei; Jian Wang; Kedong Bi; Juekuan Yang; Yunfei Chen

The effects of the contact area on the interfacial thermal conductance σ are investigated using the atomic Green’s function method. Different from the prediction of the heat diffusion transport model, we obtain an interesting result that the interfacial thermal conductance per unit area Λ is positively dependent on the contact area as the area varies from a few atoms to several square nanometers. Through calculating the phonon transmission function, it is uncovered that the phonon transmission per unit area increases with the increased contact area. This is attributed to that each atom has more neighboring atoms in the counterpart of the interface with the increased contact area, which provides more channels for phonon transport.


ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer | 2013

Interfacial Thermal Conductance Between Carbon Nanotubes From Nonequilibrium Green’s Function Method

Chenhan Liu; Jian Wang; Weiyu Chen; Zhiyong Wei; Juekuan Yang; Yunfei Chen

In this paper, the interfacial thermal conductance between two single-wall carbon nanotubes (SWCNTs) is evaluated using the nonequilibrium Green’s function (NEGF) method. The calculation results show that, for offset parallel contact type, interfacial thermal conductance increases almost linearly with the overlap length. This is because the coupling atom number in overlap region is the main contributor to heat flow through interface. With the same overlap length, interfacial thermal conductance of the nested contact type is much higher than that of the offset parallel contact type. By comparing the phonon transmission function between the two contact types, it is found that the nested contact type has much larger transmission function than the offset parallel contact type due to more atoms involving in the interfacial coupling in the overlap region. By adjusting the chirality of SWCNTs in the offset parallel contact type, it is found that the difference of phonon spectrum can reduce interfacial thermal transfer. We also find the transmission function profiles with only different overlap length are quite similar, that is, changing in the overlap length will not change the phonon transmission probability at the interface. Moreover, acoustic phonon is the main contributor to the interfacial thermal conductance and the radical breathing mode is the vital mode of coupling modes for CNT-CNT system. The calculated results in this paper indicate that increasing the coupling atom number between CNTs would increase the heat energy transfer in CNT-based composites.Copyright


Applied Physics Express | 2017

Phonon filtering for reduced thermal conductance in unconventional superlattices

Zhiyong Wei; Weiyu Chen; Zhen Chen; Kedong Bi; Juekuan Yang; Yunfei Chen

The thermal transport of an unconventional superlattice is investigated by nonequilibrium molecular dynamics simulation. It is shown that the thermal conductance of a two-order superlattice decreases by 15–29% as compared with that of a conventional superlattice. This result is unambiguously explained by the phonon transmission functions of similar one-dimensional superlattice atomic chains calculated by Greens function method. It is demonstrated that the multiscale structure introduces additional phonon bandgaps, leading to the reduction in thermal conductance due to phonon filtering effects. The proposed unconventional superlattice may find potential applications in phonon engineering, such as thermoelectrics and thermal isolation.

Collaboration


Dive into the Zhiyong Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Tao

Southeast University

View shared research outputs
Top Co-Authors

Avatar

Deyu Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge