Zhiyu Ma
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiyu Ma.
Molecular and Cellular Endocrinology | 2013
Xun Li; Juan Su; Rui Fang; Lucheng Zheng; Ruipeng Lei; Xiaoye Wang; Zhihai Lei; Mengmeng Jin; Yang Jiao; Yuanlong Hou; Tingting Guo; Zhiyu Ma
RFamide-related peptide-3 (RFRP-3) has been proposed as a key inhibitory regulator of mammalian reproduction. To further determine the potential mechanisms and sites of action of RFRP-3, we systematically investigated the direct effect of RFRP-3 on the female pig reproductive axis in vitro. Initially, we confirmed that G protein-coupled receptor 147 (GPR147) was distributed in isolated hypothalamic, anterior pituitary and ovarian granulosa cells, suggesting that RFRP-3 could act on these cells in vitro. Subsequently, the direct effects of RFRP-3 on hormone and steroid secretion, the synthesis of subunit genes and the expression of proteins related to proliferation in the hypothalamus, pituitary and ovary were evaluated. Our results demonstrate that different doses of RFRP-3 inhibited the release and synthesis of gonadotrophin releasing hormone, gonadotrophin and steroid hormones and impacted the relative gene expression of KISS1 and GnRHR and the protein expression of cyclin B1, PCNA and ERK 1/2.
Animal Reproduction Science | 2015
Lucheng Zheng; Juan Su; Rui Fang; Mengmeng Jin; Zhihai Lei; Yuanlong Hou; Zhiyu Ma; Tingting Guo
Gonadotropin-inhibitory hormone (GnIH), a key regulator of vertebrate reproduction, was identified in the Japanese quail in 2000, and RFamide-related peptide-3 (RFRP-3) was found to be a mammalian GnIH ortholog. To further determine its role in the reproductive system of male Xiaomeishan pigs, we systematically investigated changes in GnIH and its receptors (GPR147 and GPR74) during the development of the reproductive axis of male pigs. We also investigated the direct effect of RFRP-3 on the synthesis and secretion of testosterone in Leydig cells in vitro. The expression patterns of GnIH in the reproductive axis of male pigs at different stages of development (postnatal 3, 30, 60, 90, and 120D) were studied using semiquantitative RT-PCR and immunohistochemistry. Our results show that hypothalamic, pituitary and testicular levels of GnIH and its receptors mRNA significantly changed on postnatal day 30 and postnatal day 90. The immunoreactivities of the GnIH proteins were mainly localized to the spermatogenic cells, sustentacular cells and interstitial cells of the testis throughout sexual development. It was confirmed that different doses of GnIH/RFRP-3 inhibited the release and synthesis of testosterone, and impacted on the gene expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and P450, enzymes that play a key role in the synthesis of testosterone. Together, this research provides molecular and morphological data on the regulation of GnIH in the reproductive development of male pigs.
Research in Veterinary Science | 2015
Rui Fang; Juan Su; Lucheng Zheng; Mengmeng Jin; Yuanlong Hou; Zhiyu Ma; Tingting Guo; Shenzheng Zhu; Xueli Ma; Ejlal Ahmed; Zhihai Lei
Neuropeptide W (NPW), a novel hypothalamic peptide, is an endogenous ligand for the orphan G protein-coupled receptors GPR7 (NPBWR1) and GPR8 (NPBWR2). Although several studies have implicated NPW in the regulation of feeding and energy metabolism in many species, the precise physiological function of NPW in pigs remains unclear. In this study, we cloned and sequenced NPW, GPR7, and GPR8 cDNA from pigs. NPW, GPR7, and GPR8 mRNA expression was quantified in the pig brain and peripheral tissues by semiquantitative reverse transcriptase polymerase chain reaction. Immunohistochemistry showed that NPW protein expression was limited in the brain and abundant in peripheral tissues. These results suggest that NPW is involved in the regulation of various physiological functions in pigs. The molecular and morphological data from this study provide a basis for further research on the functions of NPW in pigs.
Journal of Proteome Research | 2015
Yuanlong Hou; Xiaoyan Wang; Zhihai Lei; Jihui Ping; Jiajian Liu; Zhiyu Ma; Zheng Zhang; Cuicui Jia; Mengmeng Jin; Xiang Li; Xiaoliang Li; Shaoqiu Chen; Yingfang Lv; Yingdong Gao; Wei Jia; Juan Su
Heat stress can cause systemic physiological and biochemical alterations in living organisms. In reproductive systems, heat stress induces germ cell loss and poor quality semen. However, until now, little has been known about such a complex regulation process, particularly in the perspective of metabolism. In this study, serum, hypothalamus, and epididymis samples derived from male SD (Sprague-Dawley) rats being exposed to high environmental temperature (40 °C) 2 h per day for 7 consecutive days were analyzed using metabonomics strategies based on GC/TOFMS. Differentially expressed metabolites reveal that the energy metabolism, amino acid neurotransmitters, and monoamine neurotransmitters pathways are associated with heat stress, in accordance with changes of the three upstream neuroendocrine system pathways in the SNS (sympathetic adrenergic system), hypothalamic pituitary adrenal axis (HPA), and hypothalamic pituitary testis axis (HPT) axis. Many of these metabolites, especially in the epididymis, were found to be up-regulated, presumably due to a self-preserving action to resist the environmental hot irritation to maintain normal functioning of the male reproductive system.
PLOS ONE | 2016
Zhiyu Ma; Juan Su; Tingting Guo; Mengmeng Jin; Xiang Li; Zhihai Lei; Yuanlong Hou; Xiaoliang Li; Cuicui Jia; Zheng Zhang; Ejlal Ahmed
Neuromedin B is one member of a family of bombesin-like peptides, which performs a variety of physiological functions via their receptor (NMBR) in most mammals. However, the genes encoding NMB and NMBR and their functions especially reproduction of the pigs are currently not fully understood. To research the physiological functions of NMB, we cloned and analyzed the NMB and NMBR genes, and systematically investigated the expression levels of NMB and NMBR mRNA using relative real-time PCR and the distribution of NMBR by immunohistochemistry (IHC). Experimental results show that the sequences of the amino acid and gene of NMB and NMBR were highly conservative and homology in many species, Significantly, the relative RT-PCR results revealed that NMB was mainly expressed in the central nervous system (CNS), whereas NMBR is highly expressed in peripheral tissues and organs, such as endocrine tissues, glands and reproductive organs. The IHC results show that NMBR positive cells were widely distributed in the body, such as respiratory and circulatory system, digestive system, urogenital system, in lymphatic organs and in the endocrine system. We also systematically investigated expression levels of NMB and NMBR in the reproductive axis using relative real-time PCR. In sow estrous cycle, the hypothalamic levels of both NMB and NMBR mRAN were similar, but the expression levels of the pituitary were negatively correlated. Expression levels in the ovarian system are lowest in metestrus phases and highest in proestrus and estrus phases. In boar post-natal development stages, the hypothalamic, pituitary and testicular levels of NMB and NMBR mRNAs showed developmental changes on postnatal day 30, 60, 90 and 120. Taken together, this study provided molecular and morphological data necessary for further research of physiological function of NMB/NMBR system in the pigs.
Gene | 2015
Tingting Guo; Juan Su; Zhiyu Ma; Jun-xiao Ma; Mengmeng Jin; Xiang Li; Zhihai Lei
Neuromedin B (NMB) is a highly conserved bombesin-related neuropeptide found in mammals. Neuromedin B (NMB) executes its effect by binding to the cell surface receptor, neuromedin B receptor (NMBR). In this study, we cloned the rabbit NMB and NMBR genes. The similarity and phylogenetic analyses of NMB and NMBR gene sequences were performed. The expression of NMB and NMBR mRNA in the rabbit was investigated using real-time RT-PCR. Our bioinformatic analysis demonstrated that the cloned rabbit NMB precursor cDNA encoded Gly-His-Phe-Met-NH2 amino acids at the C-terminus, and that its receptor possessed typical transmembrane features. The NMB mRNA was highly expressed in the CNS, while the NMBR mRNA was widely expressed in many tissues, with the highest expression in the gastrointestinal tract. The studies on the NMB distribution and function are limited by the lack of a specific antibody to this neuropeptide. In this paper, polyclonal NMB antibody was generated in mice. Western blotting analysis revealed that the prepared antibody could specifically recognize the recombinant and the endogenous NMB proteins. Immunohistochemistry analysis indicated that the NMB protein was localized in the cytoplasm of the pituitary cells. The existence of NMB protein in the hypothalamic-pituitary-gonadal axis suggests that NMB might function in rabbit reproduction.
PLOS ONE | 2017
Ying Zhang; Yuanlong Hou; Xiaoyan Wang; Jihui Ping; Zhiyu Ma; Chuan Suo; Zhihai Lei; Xiang Li; Zheng Zhang; Cuicui Jia; Juan Su
Kisspeptin is a peptide encoded by the Kiss 1 gene and is also called metastin. Previous studies have generally focused on several functions of this peptide, including metastasis, puberty, vasoconstriction and reproduction. However, few studies have focused on the cardiac functions of kisspeptin. In the present study, cardiac histomorphology was observed via TEM (transmission electron microscope) and HE and Masson staining to observe instinctive changes. Serum metabolites levels were also measured and analyzed using GC/TOF-MS after injection with kisspeptin-10. A gene chip was employed to screen the potential genes and pathways in the myocardium at the transcriptional leve, while RT-PCR and Western Blot were conducted to verify the relevant mRNA and protein expression, respectively. Histopathological findings demonstrated that there were many irregular wavy contractions through HE staining and increased fibrosis around the heart cells through Masson staining after treatment with kisspeptin-10. Additionally, the main changes in ultrastructure, including changes in mitochondrial and broken mitochondrial cristae, could be observed with TEM after treatment with kisspeptin-10. The PCA scores plot of the serum metabolites was in the apparent partition after injection of kisspeptin-10. Twenty-six obviously changed metabolites were detected and classified as amino acids, carbohydrate metabolites, organic acids and other metabolites. Furthermore, gene chip analysis showed 1112 differentially expressed genes after treatment with kisspeptin-10, including 330 up-regulated genes and 782 down-regulated genes. These genes were enriched in several signaling pathways related to heart diseases. The RT-PCR result for ITGB8, ITGA4, ITGB7, MYL7, HIF1-α and BNP corresponded with the gene chip assay. Moreover, the upregulated genes ITGB8, ITGA4 and BNP also displayed consistent protein levels in Western Blot results. In summary, these findings suggest that kisspeptin-10 could alter the morphology and structure of myocardial cells, serum metabolite levels, and expression of genes and proteins in heart tissues. Our work determined the profound effects of kisspeptin-10 on the heart, which could further lead to the development of therapeutics related to kisspeptin-10, including antagonists and analogs.
General and Comparative Endocrinology | 2018
Sheng Yang; Zhiyu Ma; Chuan Suo; Ling Cheng; Juan Su; Zhihai Lei
Neuropeptide B (NPB) is an endogenous ligand for the orphan G protein-coupled receptors NPBWR1 (GPR7) and NPBWR2 (GPR8). Some reports have investigated the role of NPB in the regulation of feeding, energy metabolism and hormone secretion in many species. However, few papers reported the physiological function of NPB in the pig. In this study, we cloned and sequenced the NPB mRNA from a pig, which was found to consist of 123 bases. NPB mRNA expression was detected in central and peripheral tissues by the quantitative fluorescence method. The results showed that NPB mRNA expression was higher in hippocampus, cerebellum, spinal cord, thymus, tonsil, duodenum, cecum, colon, ovary and testis. The distribution of NPB suggested that it may be involved in the regulation of reproductive functions in the pig. Subsequently, the expression and distribution of NPBWR1 and NPBWR2 were found in Leydig cells and ovarian granular cells. We then investigated the direct effect of NPB on pig reproductive cells in vitro. The results showed that different concentrations of NPB (10-12, 10-10, 10-8 and 10-6 M) promoted the secretion of testosterone in Leydig cells in concentration-dependent manner. Different doses of NPB could promote the secretion of progesterone in ovarian granulosa cells in dose-dependent manner. Low concentrations of NPB (10-8 and 10-10 M) promoted estradiol secretion, but high concentrations of NPB (10-6 M) inhibited its secretion. All the results suggested that the NPB/NPBWR1 or NPBWR2 system may play a role in modulating the reproductive activity in the pig.
Scientific Reports | 2017
Yuanlong Hou; Xiaoyan Wang; Jihui Ping; Zhihai Lei; Yingdong Gao; Zhiyu Ma; Cuicui Jia; Zheng Zhang; Xiang Li; Mengmeng Jin; Xiaoliang Li; Chuan Suo; Ying Zhang; Juan Su
The protective effects of Kisspeptin on heat-induced oxidative stress in rats were investigated by using a combination of biochemical parameters and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. At the end point of the heat stress experiment, histological observation, ultrastructural analysis and biochemical parameters were measured. Metabonomic analysis of liver tissue revealed that Kisspeptin mainly attenuated the alteration of purine metabolism and fatty acid metabolism pathways. Futhermore, Kisspeptin also increased the levels of GSH, T-AOC as well as SOD activities, and upregulated MDA levels. These results provide important mechanistic insights into the protective effects of Kisspeptin against heat-induced oxidative stress.
Peptides | 2018
Zhiyu Ma; Ying Zhang; Juan Su; Xiang Li; Sheng Yang; Wenna Qiao; Chuan Suo; Zhihai Lei
ABSTRACT Gastrin‐releasing peptide (GRP) is a mammalian bombesin (BN)‐like peptide which plays a role in a number of important physiological functions via its receptor (gastrin‐releasing peptide receptor, GRPR) in most animals. However, little is known about the gene encoding GRPR and its functions (especially reproduction) in pigs. In this study, we first cloned and analyzed the pig GRPR cDNA. Then we systematically investigated the expression levels of GRPR mRNA by relative real‐time PCR (RT‐PCR), and analyzed the distribution of the GRPR protein in pig tissues via immunohistochemistry (IHC). Finally, we studied the effect of GRP on testosterone secretion and GRPR (mRNA and protein) expression in Leydig cells. Results showed that the pig GRPR cDNA cloned at 1487 bp, including one open reading frame (ORF) of 1155 bp and encodes 384 amino acids. Significantly, compared with other species, the cDNA sequence and amino acid sequence of the pig GRPR were highly homologous and conservative. The RT‐PCR results showed that: in the central nervous system (CNS) and the pituitary, GRPR mRNA was found in the cerebellum, hypophysis, spinal cord and hypothalamus; in the peripheral tissues, GRPR mRNA was mainly expressed in the pancreas, esophagus, ovary, testis, spleen, thymus, jejunum lymph node, muscle and fat. Moreover, the IHC results showed that GRPR immunoreactivity was widely distributed in the pig tissues and organs, such as the pancreas, esophagus, testis, ovary, spleen, pituitary gland and adrenal gland. In addition, we found that GRP promotes testosterone secretion, and increases GRPR mRNA and protein expression in cultured Leydig cells in vitro. These molecular and morphological data not only describe the anatomical locations of GRPR in pigs, but also provide the theoretical foundation for further research into its possible physiological functions in pigs. These results suggest that the GRP/GRPR system may play an important role in regulating the reproductive system of the boar.