Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhong-Ping Feng is active.

Publication


Featured researches published by Zhong-Ping Feng.


Proceedings of the National Academy of Sciences of the United States of America | 2011

GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes.

Nepton Soltani; Hongmin Qiu; Mila Aleksic; Yelena Glinka; Fang Zhao; Rui Liu; Yiming Li; Nina Zhang; Rabindranath Chakrabarti; Tiffany Ng; Tianru Jin; Haibo Zhang; Wei-Yang Lu; Zhong-Ping Feng; Gérald J. Prud'homme; Qinghua Wang

Type 1 diabetes (T1D) is an autoimmune disease characterized by insulitis and islet β-cell loss. Thus, an effective therapy may require β-cell restoration and immune suppression. Currently, there is no treatment that can achieve both goals efficiently. We report here that GABA exerts antidiabetic effects by acting on both the islet β-cells and immune system. Unlike in adult brain or islet α-cells in which GABA exerts hyperpolarizing effects, in islet β-cells, GABA produces membrane depolarization and Ca2+ influx, leading to the activation of PI3-K/Akt–dependent growth and survival pathways. This provides a potential mechanism underlying our in vivo findings that GABA therapy preserves β-cell mass and prevents the development of T1D. Remarkably, in severely diabetic mice, GABA restores β-cell mass and reverses the disease. Furthermore, GABA suppresses insulitis and systemic inflammatory cytokine production. The β-cell regenerative and immunoinhibitory effects of GABA provide insights into the role of GABA in regulating islet cell function and glucose homeostasis, which may find clinical application.


Development | 2007

Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth

Kwokyin Hui; Guanghe Fei; Bechara J. Saab; Jiang Su; John C. Roder; Zhong-Ping Feng

Neurite extension and branching are affected by activity-dependent modulation of intracellular Ca2+, such that an optimal window of [Ca2+] is required for outgrowth. Our understanding of the molecular mechanisms regulating this optimal [Ca2+]i remains unclear. Taking advantage of the large growth cone size of cultured primary neurons from pond snail Lymnaea stagnalis combined with dsRNA knockdown, we show that neuronal calcium sensor-1 (NCS-1) regulates neurite extension and branching, and activity-dependent Ca2+ signals in growth cones. An NCS-1 C-terminal peptide enhances only neurite branching and moderately reduces the Ca2+ signal in growth cones compared with dsRNA knockdown. Our findings suggest that at least two separate structural domains in NCS-1 independently regulate Ca2+ influx and neurite outgrowth, with the C-terminus specifically affecting branching. We describe a model in which NCS-1 regulates cytosolic Ca2+ around the optimal window level to differentially control neurite extension and branching.


Diabetes | 2014

GABA promotes human β-cell proliferation and modulates glucose homeostasis

Purwana I; Zheng J; Xie Li; Deurloo M; Son Do; Zhigang Zhang; Liang C; Enqing Shen; Tadkase A; Zhong-Ping Feng; Yanliang Li; Hasilo C; Paraskevas S; Rita Bortell; Dale L. Greiner; Mark A. Atkinson; Gérald J. Prud'homme; Qinghua Wang

γ-Aminobutyric acid (GABA) exerts protective and regenerative effects on mouse islet β-cells. However, in humans it is unknown whether it can increase β-cell mass and improve glucose homeostasis. To address this question, we transplanted a suboptimal mass of human islets into immunodeficient NOD-scid-γ mice with streptozotocin-induced diabetes. GABA treatment increased grafted β-cell proliferation, while decreasing apoptosis, leading to enhanced β-cell mass. This was associated with increased circulating human insulin and reduced glucagon levels. Importantly, GABA administration lowered blood glucose levels and improved glucose excursion rates. We investigated GABA receptor expression and signaling mechanisms. In human islets, GABA activated a calcium-dependent signaling pathway through both GABA A receptor and GABA B receptor. This activated the phosphatidylinositol 3-kinase–Akt and CREB–IRS-2 signaling pathways that convey GABA signals responsible for β-cell proliferation and survival. Our findings suggest that GABA regulates human β-cell mass and may be beneficial for the treatment of diabetes or improvement of islet transplantation.


PLOS ONE | 2011

A Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis

Tom Z. Lu; Zhong-Ping Feng

The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals.


Neuroscience | 2007

Kir6.2-containing ATP-sensitive potassium channels protect cortical neurons from ischemic/anoxic injury in vitro and in vivo.

Hong-Shuo Sun; Zhong-Ping Feng; P A Barber; Alastair M. Buchan; Robert J. French

ATP-sensitive potassium (K(ATP)) channels are weak inward rectifiers that appear to play an important role in protecting neurons against ischemic damage. Cerebral stroke is a major health issue, and vulnerability to stroke damage is regional within the brain. Thus, we set out to determine whether K(ATP) channels protect cortical neurons against ischemic insults. Experiments were performed using Kir6.2(-/-) K(ATP) channel knockout and Kir6.2(+/+) wildtype mice. We compared results obtained in Kir6.2(-/-) and wildtype mice to evaluate the protective role of K(ATP) channels against focal ischemia in vivo, and, using cortical slices, against anoxic stress in vitro. Immunohistochemistry confirmed the presence of K(ATP) channels in the cortex of wildtype, but not Kir6.2(-/-), mice. Results from in vivo and in vitro experimental models indicate that Kir6.2-containing K(ATP) channels in the cortex provide protection from neuronal death. Briefly, in vivo focal ischemia (15 min) induced severe neurological deficits and large cortical infarcts in Kir6.2(-/-) mice, but not in wildtype mice. Imaging analyses of cortical slices exposed briefly to oxygen and glucose deprivation (OGD) revealed a substantial number of damaged cells (propidium iodide-labeled) in the Kir6.2(-/-) OGD group, but few degenerating neurons in the wildtype OGD group, or in the wildtype and Kir6.2(-/-) control groups. Slices from the three control groups had far more surviving cells (anti-NeuN antibody-labeled) than slices from the Kir6.2(-/-) OGD group. These findings suggest that stimulation of endogenous cortical K(ATP) channels may provide a useful strategy for limiting the damage that results from cerebral ischemic stroke.


Psychopharmacology | 2013

The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells

Haitao Wang; Xuanhe Zhou; Jianchu Huang; Nan Mu; Zeli Guo; Qiang Wen; Rikang Wang; Shaorui Chen; Zhong-Ping Feng; Wenhua Zheng

RationaleAntidepressants could exert neuroprotective effects against various insults and the antidepressant-like effect may result from its neuroprotective effects. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O3 (PI3K/Akt/FoxO3a) pathway is a key signaling pathway in mediating cell survival. However, no information is available regarding the interaction of FoxO3a and antidepressants.ObjectivesPC12 cells treated with corticosterone were used as a model to study the protective effect of venlafaxine and underlying mechanisms.MethodsMethyl thiazolyl tetrazolium (MTT) assay, Hoechst staining, and the observation of FoxO3a subcellular location were used to study the protective effect of venlafaxine against cell damage caused by corticosterone. Pretreatments with various pathway inhibitors were used to investigate the possible pathways involved in the protection of venlafaxine. The phosphorylation of Akt and FoxO3a was analyzed by Western blot.ResultsCorticosterone decreased the phosphorylation of Akt and FoxO3a and led to the nuclear localization of FoxO3a and the apoptosis of PC12 cells. Venlafaxine concentration-dependently protected PC12 cells against corticosterone. The protective effect of venlafaxine was reversed by LY294002 and wortmannin, two PI3K inhibitors, and Akt inhibitor VIII, whereas mitogen-activated protein kinase kinase (MAPK kinase) inhibitor PD98059 and the p38 MAPK inhibitor PD160316 had no effect. Western blot analyses showed that venlafaxine induced the phosphorylation of Akt and FoxO3a by the PI3K/Akt pathway and reversed the reduction of the phosphorylated Akt and FoxO3a, and the nuclear translocation of Foxo3a induced by corticosterone.ConclusionsVenlafaxine protects PC12 cells against corticosterone-induced cell death by modulating the activity of the PI3K/Akt/FoxO3a pathway.


Experimental Neurology | 2015

Neuronal KATP channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic–ischemic brain injury

Hong-Shuo Sun; Baofeng Xu; Wenliang Chen; Aijiao Xiao; Ekaterina Turlova; Ammar Alibraham; Andrew Barszczyk; Christine Youjin Bae; Yi Quan; Baosong Liu; Lin Pei; Christopher L.F. Sun; Marielle Deurloo; Zhong-Ping Feng

Neonatal hypoxic-ischemic brain injury and its related illness hypoxic-ischemic encephalopathy (HIE) are major causes of nervous system damage and neurological morbidity in children. Hypoxic preconditioning (HPC) is known to be neuroprotective in cerebral ischemic brain injury. K(ATP) channels are involved in ischemic preconditioning in the heart; however the involvement of neuronal K(ATP) channels in HPC in the brain has not been fully investigated. In this study, we investigated the role of HPC in hypoxia-ischemia (HI)-induced brain injury in postnatal seven-day-old (P7) CD1 mouse pups. Specifically, TTC (2,3,5-triphenyltetrazolium chloride) staining was used to assess the infarct volume, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling) to detect apoptotic cells, Western blots to evaluate protein level, and patch-clamp recordings to measure K(ATP) channel current activities. Behavioral tests were performed to assess the functional recovery after hypoxic-ischemic insults. We found that hypoxic preconditioning reduced infarct volume, decreased the number of TUNEL-positive cells, and improved neurobehavioral functional recovery in neonatal mice following hypoxic-ischemic insults. Pre-treatment with a K(ATP) channel blocker, tolbutamide, inhibited hypoxic preconditioning-induced neuroprotection and augmented neurodegeneration following hypoxic-ischemic injury. Pre-treatment with a K(ATP) channel opener, diazoxide, reduced infarct volume and mimicked hypoxic preconditioning-induced neuroprotection. Hypoxic preconditioning induced upregulation of the protein level of the Kir6.2 isoform and enhanced current activities of K(ATP) channels. Hypoxic preconditioning restored the HI-reduced PKC and pAkt levels, and reduced caspase-3 level, while tolbutamide inhibited the effects of hypoxic preconditioning. We conclude that K(ATP) channels are involved in hypoxic preconditioning-induced neuroprotection in neonatal hypoxic-ischemic brain injury. K(ATP) channel openers may therefore have therapeutic effects in neonatal hypoxic-ischemic brain injury.


BioMed Research International | 2014

The Nerve Growth Factor Signaling and Its Potential as Therapeutic Target for Glaucoma

Haitao Wang; Rikang Wang; Thilini R. Thrimawithana; Peter J. Little; Jiangping Xu; Zhong-Ping Feng; Wenhua Zheng

Neuroprotective therapies which focus on factors leading to retinal ganglion cells (RGCs) degeneration have been drawing more and more attention. The beneficial effects of nerve growth factor (NGF) on the glaucoma have been recently suggested, but its effects on eye tissue are complex and controversial in various studies. Recent clinical trials of systemically and topically administrated NGF demonstrate that NGF is effective in treating several ocular diseases, including glaucoma. NGF has two receptors named high affinity NGF tyrosine kinase receptor TrkA and low affinity receptor p75NTR. Both receptors exist in cells in retina like RGC (expressing TrkA) and glia cells (expressing p75NTR). NGF functions by binding to TrkA or p75NTR alone or both together. The binding of NGF to TrkA alone in RGC promotes RGCs survival and proliferation through activation of TrkA and several prosurvival pathways. In contrast, the binding of NGF to p75NTR leads to apoptosis although it also promotes survival in some cases. Binding of NGF to both TrkA and p75NTR at the same time leads to survival in which p75NTR functions as a TrkA helping receptor. This review discusses the current understanding of the NGF signaling in retina and the therapeutic implications in the treatment of glaucoma.


The Journal of Neuroscience | 2005

N-Terminal Insertion and C-Terminal Ankyrin-Like Repeats of α-Latrotoxin Are Critical for Ca2+-Dependent Exocytosis

Gang Li; David B. N. Lee; Li Wang; Mikhail Khvotchev; Soon Kwang Chiew; Lakshmanan Arunachalam; Tony J. Collins; Zhong-Ping Feng; Shuzo Sugita

α-Latrotoxin, a potent stimulator of exocytosis from neurons and neuroendocrine cells, has been studied intensively, but the mechanisms of its actions are poorly understood. Here, we developed a new method to generate active recombinant α-latrotoxin and conducted a structure/function analysis of the toxin in stimulating Ca2+-dependent exocytosis. α-Latrotoxin consists of a conserved N-terminal domain and C-terminal ankyrin-like repeats. After cleavage of an N-terminally fused purification tag of glutathione S-transferase (GST), the recombinant toxin strongly stimulated exocytosis, whereas the GST-fused toxin was much less potent. The GST-fused toxin bound to the receptors [neurexin 1α; CL1 (CIRL/latrophilin 1)] as efficiently as did the GST-cleaved toxin but was much less effective in inserting into the plasma membrane and inducing cation conductance. The toxin with deletion of the last two ankyrin-like repeats still bound the receptors but could neither stimulate exocytosis nor induce cation conductance efficiently. The abilities of the mutated toxins to stimulate exocytosis correlated well with their abilities to induce cation conductance, but not their binding to the receptors. Our results indicate that (1) C-terminal ankyrin-like repeats and a free (unfused) N terminus are both required for the toxin to form pores, which is essential for Ca2+-dependent exocytosis, and (2) receptor binding alone is not sufficient to stimulate Ca2+-dependent exocytosis.


Journal of Molecular Neuroscience | 2015

IGF-1 Signaling via the PI3K/Akt Pathway Confers Neuroprotection in Human Retinal Pigment Epithelial Cells Exposed to Sodium Nitroprusside Insult

Haitao Wang; Sufen Liao; Ruojun Geng; Yongxin Zheng; Rifang Liao; Fengxia Yan; Thilini R. Thrimawithana; Peter J. Little; Zhong-Ping Feng; Philip Lazarovici; Wenhua Zheng

The pathological increase in the levels of the second messenger nitric oxide (NO) in the vitreous cavity and retina leads to injury and cell death of the retinal pigment epithelium (RPE) cells and eventually may contribute to the occurrence and development of diabetic retinopathy. In this study, we developed a cellular model of retinopathy using D407 cells (a human RPE cell line) exposed to sodium nitroprusside (SNP) and investigated the protective effect of the insulin-like growth factor-1 (IGF-1) towards this insult. Cell death and apoptosis were examined by the methyl thiazolyl tetrazolium assay and Hoechst staining, respectively. Specific inhibitors were used and phosphorylation of relevant signaling proteins was determined by Western blotting. SNP, in a concentration-dependent fashion, increased the production of reactive oxygen species (ROS) and lipid peroxidation process causing cell death by apoptosis of D407 cells. IGF-1, in a time- and dose-dependent manner, conferred protection towards SNP-mediated insult. Both phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase (MAPK) were activated by IGF-1 in relation to the protective effect. Blockade of the PI3K/Akt pathway abolished the protective effect of IGF-1 whereas inhibition of the MAPK pathway was ineffective. SNP decreased the phosphorylation of Akt in the cells while IGF-1 reversed this inhibitory effect. These results indicate that the protective effect of IGF-1 on D407 exposed to SNP insult is mediated by the PI3K/Akt pathway. This proposal may be exploited in the clinic to improve the viability of insulted retinal cells for maintaining physiological vision.

Collaboration


Dive into the Zhong-Ping Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haitao Wang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Z. Lu

University of Toronto

View shared research outputs
Researchain Logo
Decentralizing Knowledge