Zhongbing Chen
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhongbing Chen.
Journal of Hazardous Materials | 2012
Zhongbing Chen; Peter Kuschk; Nils Reiche; Helko Borsdorf; Matthias Kästner; H. Köser
In order to evaluate technology options for the treatment of groundwater contaminated with benzene and MTBE in constructed wetlands (CWs), a scarcely applied plant root mat system and two horizontal subsurface-flow (HSSF) CWs were investigated. The inflow load of benzene and MTBE were 188-522 and 31-90 mg d(-1)m(-2), respectively. Higher removal efficiencies were obtained during summer in all systems. The benzene removal efficiencies were 0-33%, 24-100% and 22-100% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively; the MTBE removal efficiencies amounted to 0-33%, 16-93% and 8-93% in the unplanted HSSF-CW, planted HSSF-CW and the plant root mat, respectively. The volatilisation rates in the plant root mat amounted to 7.24 and 2.32 mg d(-1)m(-2) for benzene and MTBE, which is equivalent to 3.0% and 15.2% of the total removal. The volatilisation rates in the HSSF-CW reached 2.59 and 1.07 mg d(-1)m(-2), corresponding to 1.1% and 6.1% of the total removal of benzene and MTBE, respectively. The results indicate that plant root mats are an interesting option for the treatment of waters polluted with benzene and MTBE under moderate temperatures conditions.
Science of The Total Environment | 2016
Yi Chen; Jan Vymazal; Tereza Březinová; Milan Koželuh; Lumír Kule; Jingang Huang; Zhongbing Chen
Rural communities in central and eastern Europe usually use constructed wetlands (CWs) to treat domestic wastewater. Effluents from these systems are regularly discharged to receiving water, resulting in a potential transfer of pharmaceuticals and personal care products (PPCPs) from sewage to the aquatic environment. In this study, the seasonal occurrence, removal and risk assessment of 32 multi-class PPCPs were investigated in three CWs from the village of south Bohemia, Czech Republic. Among the PPCPs considered, 25 compounds were detected in sewage influent, and ibuprofen, caffeine and paracetamol were the most commonly detected PPCPs. The removal efficiencies of PPCPs in the rural CWs exhibited large variability with 11-100% for anti-inflammatories, 37-99% for β-blockers and 18-95% for diuretics. The statistical results revealed significant correlations between removal efficiencies of six PPCPs and conventional water quality parameters. The ecotoxicological assessment study revealed that most of the PPCPs (except ibuprofen) in the effluent yielded low aquatic risk. This study suggested that constructed wetlands could be effective for removing PPCPs and reducing environmental risk of PPCPs discharged from rural communities into surface water systems.
Environmental Science and Pollution Research | 2016
Zhongbing Chen; Diego Paredes Cuervo; Jochen A. Müller; Arndt Wiessner; H. Köser; Jan Vymazal; Matthias Kästner; Peter Kuschk
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.
Chemosphere | 2012
Zhongbing Chen; Shubiao Wu; Mareike Braeckevelt; Heidrun Paschke; Matthias Kästner; H. Köser; Peter Kuschk
In order to characterize the effect of vegetation on performance of constructed wetlands (CWs) treating low and high chlorinated hydrocarbon, two pilot-scale horizontal subsurface flow (HSSF) CWs (planted with Phragmites australis and unplanted) treating sulphate rich groundwater contaminated with MCB (monochlorobenzene, as a low chlorinated hydrocarbon), (about 10 mg L(-1)), and PCE (perchloroethylene, as a high chlorinated hydrocarbon), (about 2 mg L(-1)), were examined. With mean MCB inflow load of 299 mg m(-2) d(-1), the removal rate was 58 and 208 mg m(-2) d(-1) in the unplanted and planted wetland, respectively, after 4 m from the inlet. PCE was almost completely removed in both wetlands with mean inflow load of 49 mg m(-2) d(-1). However, toxic metabolites cis-1,2-DCE (dichloroethene) and VC (vinyl chloride) accumulated in the unplanted wetland; up to 70% and 25% of PCE was dechlorinated to cis-1,2-DCE and VC after 4 m from the inlet, respectively. Because of high sulphate concentration (around 850 mg L(-1)) in the groundwater, the plant derived organic carbon caused sulphide formation (up to 15 mg L(-1)) in the planted wetland, which impaired the MCB removal but not statistically significant. The results showed significant enhancement of vegetation on the removal of the low chlorinated hydrocarbon MCB, which is probably due to the fact that aerobic MCB degraders are benefited from the oxygen released by plant roots. Vegetation also stimulated completely dechlorination of PCE due to plant derived organic carbon, which is potentially to provide electron donor for dechlorination process. The plant derived organic carbon also stimulated dissimilatory sulphate reduction, which subsequently have negative effect on MCB removal.
Applied and Environmental Microbiology | 2015
Paula M. Martínez-Lavanchy; Zhongbing Chen; Vanessa Lünsmann; V. Marin-Cevada; Ramiro Vilchez-Vargas; Dietmar H. Pieper; Nils Reiche; Uwe Kappelmeyer; V. Imparato; Howard Junca; Ivonne Nijenhuis; Jochen A. Müller; Peter Kuschk; Hermann J. Heipieper
ABSTRACT In the present study, microbial toluene degradation in controlled constructed wetland model systems, planted fixed-bed reactors (PFRs), was queried with DNA-based methods in combination with stable isotope fractionation analysis and characterization of toluene-degrading microbial isolates. Two PFR replicates were operated with toluene as the sole external carbon and electron source for 2 years. The bulk redox conditions in these systems were hypoxic to anoxic. The autochthonous bacterial communities, as analyzed by Illumina sequencing of 16S rRNA gene amplicons, were mainly comprised of the families Xanthomonadaceae, Comamonadaceae, and Burkholderiaceae, plus Rhodospirillaceae in one of the PFR replicates. DNA microarray analyses of the catabolic potentials for aromatic compound degradation suggested the presence of the ring monooxygenation pathway in both systems, as well as the anaerobic toluene pathway in the PFR replicate with a high abundance of Rhodospirillaceae. The presence of catabolic genes encoding the ring monooxygenation pathway was verified by quantitative PCR analysis, utilizing the obtained toluene-degrading isolates as references. Stable isotope fractionation analysis showed low-level of carbon fractionation and only minimal hydrogen fractionation in both PFRs, which matches the fractionation signatures of monooxygenation and dioxygenation. In combination with the results of the DNA-based analyses, this suggests that toluene degradation occurs predominantly via ring monooxygenation in the PFRs.
Water Research | 2012
Shubiao Wu; Zhongbing Chen; Mareike Braeckevelt; Eva M. Seeger; Renjie Dong; Matthias Kästner; Heidrun Paschke; Anja Hahn; Gernot Kayser; Peter Kuschk
Long-term investigations were carried out in two pilot-scale horizontal subsurface flow constructed wetlands (planted and unplanted) with an iron-rich soil matrix for treating sulphate-rich groundwater which was contaminated with low concentrations of chlorinated hydrocarbons. The temporal and spatial dynamics of pore-water sulphide, Fe(II) and phosphate concentrations in the wetland beds were characterized and the seasonal effects on sulphide production and nitrification inhibition were evaluated. The results demonstrated that the pore-water sulphide concentrations gradually increased from less than 0.2 mg/L in 2005 to annual average concentrations of 15 mg/L in 2010, while the pore-water Fe(II) concentrations decreased from 35.4 mg/L to 0.3 mg/L. From 2005 to 2010, the phosphate removal efficiency declined from 91% to 10% under a relatively constant inflow concentration of 5 mg/L. The pronounced effect of plants was accompanied by a higher sulphate reduction and ammonium oxidation in the planted bed, as compared to the unplanted control. A high tolerance of plants towards sulphide toxicity was observed, which might be due to the detoxification of sulphide by oxygen released by the roots. However, during the period of 2009-2010, the nitrification was negatively impacted by the sulphide production as the reduction in the removal of ammonium from 75% to 42% (with inflow concentration of 55 mg/L) correlated with the increasing mean annual sulphide concentrations. The effect of the detoxification of sulphide and the immobilization of phosphate by the application of the iron-rich soil matrix in the initial years was proven; however, the life-span of this effect should not only be taken into consideration in further design but also in scientific studies.
Chemosphere | 2014
Zhongbing Chen; Peter Kuschk; Heidrun Paschke; Matthias Kästner; Jochen A. Müller; H. Köser
A hydroponic plant root mat filter (HPRMF) was compared over 7months with a horizontal subsurface flow constructed wetland (HSSF CW) regarding the removal of perchloroethene (PCE) (about 2 mg L(-1)) from a sulfate- (850 mg L(-1)) and ammonia-rich (50 mg L(-1)) groundwater with a low TOC content. At a mean area specific inflow PCE load of 56 mg m(-2)d(-1), after 4m from inlet, the mean PCE removal during summer time reached 97% in the HPRMF and almost 100% in the HSSF CW. Within the first 2m in the HSSF CW metabolites like dichloroethenes, vinyl chloride and ethene accumulated, their concentrations decreased further along the flow path. Moreover, the tidal operation (a 7-d cycle) in the HSSFCW decreased the accumulation of PCE metabolites within the first 1m of the bed. The carcinogenic degradation metabolite vinyl chloride was not detected in the HPRMF. The smaller accumulation of the degradation metabolites in the HPRMF correlated with its higher redox potential. It can be concluded from this study that HPRMF appears an interesting alternative for special water treatment tasks and that tidal operation will show some positive effects on the removal of the accumulated PCE metabolites in HSSF CW.
Archive | 2016
Zhongbing Chen; Jan Vymazal; Peter Kuschk
Chlorinated benzenes (CBs) are common pollutants in groundwater due to their broad usage in industry and agriculture. Remediation of CBs from contaminated groundwater is of great importance. Biodegradation has proved to be a suitable approach in eliminating CBs from polluted water, and constructed wetland (CW) is an alternative as cost efficient technology to remove CBs from wastewater. In the present study, a comparison covering five growing seasons (from May 2006 to November 2010) was carried out among four pilot-scale CWs: (1) unplanted horizontal subsurface flow (HSSF) CW; (2) planted HSSF CW; (3) planted HSSF CW with tidal flow; (4) hydroponic root mat (HRM). The unplanted HSSF CW was not efficient for CBs removal, with removal efficiency less than 23 % for the four CBs, and no capability to remove 1,2-DCB. Planted HSSF CW exhibited significantly better treatment performance than the unplanted HSSF CW, and the CBs removal efficiency can be enhanced to some extend (especially after 3 m from the flow path) when running under tidal flow operation. Highest CBs removal efficiency was reached in the HRM system, with mean removal rates for monochlorobenzene, 2-chlorotoluene, 1,4-dichlorobenzene (DCB) and 1,2-DCB were 219, 0.92, 7.48 and 0.86 mg/m2/d, respectively. In conclusion, the HRM is the best variant CW to treat chlorinated benzenes, and it can be an option for the treatment of pollutants which prefer aerobic degradation.
Environmental Science and Pollution Research | 2016
Zhongbing Chen; Shanshan Hu; Chengxiao Hu; Liangliang Huang; Hongbo Liu; Jan Vymazal
Science of The Total Environment | 2017
Zhongbing Chen; Yi Chen; Jan Vymazal; Lumír Kule; Milan Koželuh