Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongbo Hu is active.

Publication


Featured researches published by Zhongbo Hu.


Experimental Hematology | 2008

Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation

Xiaomiao Li; Zhongbo Hu; Marda L. Jorgenson; John R. Wingard; William B. Slayton

OBJECTIVE Bone marrow sinusoids remain predominantly host-derived following bone marrow transplantation. Systematic analysis was conducted at the cellular level to investigate how the host sinusoidal structures survived after lethal irradiation. MATERIALS AND METHODS Apoptosis and cell proliferation assays were performed on bone marrow sections at various time points during the first 2 weeks postirradiation to study the extent of damage to sinusoidal endothelial cells from lethal irradiation and to determine whether cell proliferation contributes to the recovery of the sinusoidal system. RESULTS Phosphorylated H2AX was present in both hematopoietic and sinusoidal endothelial cells 3 hours after irradiation demonstrating DNA damage. Three days after irradiation, some sinusoidal endothelial cells became terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling -positive, but were caspase-3 and in situ oligo ligation -negative, suggesting nonapoptotic DNA fragmentation. Clusters of sinusoidal endothelial cells that expressed Ki67 appeared 3 days after irradiation, and increased through day 7. These Ki67-positive endothelial cells were host-derived. Bromodeoxyuridine-positive endothelial cells were present in the Ki67-positive areas confirming endothelial cell replication. Twenty percent of the sinusoidal endothelial cells were lost by day 3 after irradiation. The total number of endothelial cells remained relatively unchanged between day 3 and day 14. These results demonstrate that lethal irradiation resulted in limited, nonapoptotic sinusoidal endothelial cell loss, followed by proliferation of preexisting host-derived mature sinusoidal endothelial cells. Our data suggest that DNA repair mechanisms and proliferation of host endothelial cells within the sinusoids are involved in maintenance of the structural integrity of the bone marrow vascular niche following lethal irradiation.


PLOS ONE | 2013

Conditional Deletion of Jak2 Reveals an Essential Role in Hematopoiesis throughout Mouse Ontogeny: Implications for Jak2 Inhibition in Humans

Sung O. Park; Heather L. Wamsley; Kyung-Mi Bae; Zhongbo Hu; Xiaomiao Li; Se woon Choe; William B. Slayton; S. Paul Oh; Kay Uwe Wagner; Peter P. Sayeski

Germline deletion of Jak2 in mice results in embryonic lethality at E12.5 due to impaired hematopoiesis. However, the role that Jak2 might play in late gestation and postnatal life is unknown. To understand this, we utilized a conditional knockout approach that allowed for the deletion of Jak2 at various stages of prenatal and postnatal life. Specifically, Jak2 was deleted beginning at either mid/late gestation (E12.5), at postnatal day 4 (PN4), or at ∼2 months of age. Deletion of Jak2 beginning at E12.5 resulted in embryonic death characterized by a lack of hematopoiesis. Deletion beginning at PN4 was also lethal due to a lack of erythropoiesis. Deletion of Jak2 in young adults was characterized by blood cytopenias, abnormal erythrocyte morphology, decreased marrow hematopoietic potential, and splenic atrophy. However, death was observed in only 20% of the mutants. Further analysis of these mice suggested that the increased survivability was due to an incomplete deletion of Jak2 and subsequent re-population of Jak2 expressing cells, as conditional deletion in mice having one floxed Jak2 allele and one null allele resulted in a more severe phenotype and subsequent death of all animals. We found that the deletion of Jak2 in the young adults had a differential effect on hematopoietic lineages; specifically, conditional Jak2 deletion in young adults severely impaired erythropoiesis and thrombopoiesis, modestly affected granulopoiesis and monocytopoiesis, and had no effect on lymphopoiesis. Interestingly, while the hematopoietic organs of these mutant animals were severely affected by the deletion of Jak2, we found that the hearts, kidneys, lungs, and brains of these same mice were histologically normal. From this, we conclude that Jak2 plays an essential and non-redundant role in hematopoiesis during both prenatal and postnatal life and this has direct implications regarding the inhibition of Jak2 in humans.


Human Gene Therapy | 2008

Stable Integration of Recombinant Adeno-Associated Virus Vector Genomes After Transduction of Murine Hematopoietic Stem Cells

Zongchao Han; Li Zhong; Njeri Maina; Zhongbo Hu; Xiaomiao Li; Nitin S. Chouthai; Daniela Bischof; Kirsten A. Weigel-Van Aken; William B. Slayton; Mervin C. Yoder; Arun Srivastava

We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.


Blood | 2014

Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan.

Zhi-Jian Liu; Karin M. Hoffmeister; Zhongbo Hu; Donald E. Mager; Sihem Ait-Oudhia; Marlyse A. Debrincat; Irina Pleines; Emma C. Josefsson; Benjamin T. Kile; Joseph E. Italiano; Haley Ramsey; Renata Grozovsky; Peter Veng-Pedersen; Chaitanya Chavda; Martha Sola-Visner

The fetal/neonatal hematopoietic system must generate enough blood cells to meet the demands of rapid growth. This unique challenge might underlie the high incidence of thrombocytopenia among preterm neonates. In this study, neonatal platelet production and turnover were investigated in newborn mice. Based on a combination of blood volume expansion and increasing platelet counts, the platelet mass increased sevenfold during the first 2 weeks of murine life, a time during which thrombopoiesis shifted from liver to bone marrow. Studies applying in vivo biotinylation and mathematical modeling showed that newborn and adult mice had similar platelet production rates, but neonatal platelets survived 1 day longer in circulation. This prolonged lifespan fully accounted for the rise in platelet counts observed during the second week of murine postnatal life. A study of pro-apoptotic and anti-apoptotic Bcl-2 family proteins showed that neonatal platelets had higher levels of the anti-apoptotic protein Bcl-2 and were more resistant to apoptosis induced by the Bcl-2/Bcl-xL inhibitor ABT-737 than adult platelets. However, genetic ablation or pharmacologic inhibition of Bcl-2 alone did not shorten neonatal platelet survival or reduce platelet counts in newborn mice, indicating the existence of redundant or alternative mechanisms mediating the prolonged lifespan of neonatal platelets.


Stem Cells | 2005

Developmental Differences in Megakaryocyte Maturation Are Determined by the Microenvironment

William B. Slayton; David A. Wainman; Xiao Miao Li; Zhongbo Hu; Anil Jotwani; Christopher R. Cogle; Danielle Walker; Robert C. Fisher; John R. Wingard; Edward W. Scott; Martha C. Sola

Historically, physicians have attributed delayed platelet engraftment following umbilical cord blood transplant to decreased numbers of stem cells in cord blood compared with adult bone marrow. However, recent studies suggest that delayed platelet engraftment may be caused by an intrinsic inability of neonatal stem cells to produce mature, polyploid megakaryocytes. We tested this hypothesis by transplanting adult bone marrow and newborn liver hematopoietic stem and progenitor cells from transgenic mice expressing green fluorescent protein into myeloablated wild‐type recipients and comparing the size and ploidy levels of megakaryocytes that developed in adult transplant recipients. Transplanted stem and progenitor cells, regardless of their source, gave rise to megakaryocytes that were larger than normal adult megakaryocytes as early as 7 days post‐transplant. However, megakaryocytes that developed after transplant of neonatal stem and progenitor cells were significantly smaller than those derived from adult stem and progenitor cells. Furthermore, megakaryocytes derived from neonatal cells had lower ploidy values than megakaryocytes derived from adult cells at 18 days post‐transplant, when ploidy could first be reliably measured in the bone marrow. These differences in size and ploidy disappeared by 1 month post‐transplant. The largest megakaryocytes developed in the spleen. These results suggest that, in the mouse, the microenvironment is responsible for some of the maturational differences in size and ploidy between neonatal and adult megakaryocytes. Furthermore, neonatal and adult megakaryocyte progenitors also have cell‐intrinsic differences in the way they engraft and respond to thrombocytopenic stress. These differences may contribute to the delay in platelet engraftment that frequently complicates cord blood transplants.


Circulation | 2009

High Levels of Acetylated Low-Density Lipoprotein Uptake and Low Tyrosine Kinase With Immunoglobulin and Epidermal Growth Factor Homology Domains-2 (Tie2) Promoter Activity Distinguish Sinusoids From Other Vessel Types in Murine Bone Marrow

Xiaomiao Li; Zhongbo Hu; Marda L. Jorgenson; William B. Slayton

Background— The bone marrow contains a variety of blood vessels that have different functions in bone marrow maintenance and hematopoiesis. Arterioles control the flow of blood into bone marrow compartments, and sinusoids serve as a conduit to the bloodstream and as niches for megakaryocyte development. Most studies of bone marrow vasculature, including studies quantifying changes in the marrow vascular by microvascular density, do not differentiate between different types of marrow vessels. Recognizing changes in different types of blood vessels after chemotherapy exposure or during leukemia development has important physiological implications. We hypothesized that the functional heterogeneity of marrow vasculature could be recognized through the use of functional markers such as tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) expression or 1,1′-dioctadecyl -3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate with acetylated low-density lipoprotein (DiI-Ac-LDL) uptake. Methods and Results— When transgenic mice with green fluorescent protein (GFP) expressed downstream of the Tie2 promoter were injected with Ac-LDL, Ac-LDL was specifically endocytosed by sinusoids, and Tie2 expression was more pronounced in the arteries, arterioles, and transitional capillaries. Combining these 2 functional endothelial markers and using confocal microscopy to obtain 3-dimensional images, we identified transitional zones where arterioles emptied into the sinusoids. Alternatively, coinjection of lectin with DiI-Ac-LDL has a similar result in normal mice, as seen in Tie2/GFP mice, and can be used to differentiate vessel types in nontransgenic mice. Conclusions— These results demonstrate that bone marrow vasculature is functionally heterogeneous. Methods to study changes in the marrow vasculature using microvascular density or quantifying changes in the vascular niche need to take this heterogeneity into account.


Human Gene Therapy | 2008

Recombinant Self-Complementary Adeno-Associated Virus Serotype Vector-Mediated Hematopoietic Stem Cell Transduction and Lineage-Restricted, Long-Term Transgene Expression in a Murine Serial Bone Marrow Transplantation Model

Njeri Maina; Zongchao Han; Xiaomiao Li; Zhongbo Hu; Li Zhong; Daniela Bischof; Kirsten A. Weigel-Van Aken; William B. Slayton; Mervin C. Yoder; Arun Srivastava

Although conventional recombinant single-stranded adeno-associated virus serotype 2 (ssAAV2) vectors have been shown to efficiently transduce numerous cells and tissues such as brain and muscle, their ability to transduce primary hematopoietic stem cells (HSCs) has been reported to be controversial. We have previously documented that among the ssAAV serotype 1 through 5 vectors, ssAAV1 vectors are more efficient in transducing primary murine HSCs, but that viral second-strand DNA synthesis continues to be a rate-limiting step. In the present studies, we evaluated the transduction efficiency of several novel serotype vectors (AAV1, AAV7, AAV8, and AAV10) and documented efficient transduction of HSCs in a murine serial bone marrow transplantation model. Self-complementary AAV (scAAV) vectors were found to be more efficient than ssAAV vectors, and the use of hematopoietic cell-specific enhancers/promoters, such as the human beta-globin gene DNase I-hypersensitive site 2 enhancer and promoter (HS2-betap) from the beta-globin locus control region (LCR), and the human parvovirus B19 promoter at map unit 6 (B19p6), allowed sustained transgene expression in an erythroid lineage-restricted manner in both primary and secondary transplant recipient mice. The proviral AAV genomes were stably integrated into progenitor cell chromosomal DNA, and did not lead to any overt hematological abnormalities in mice. These studies demonstrate the feasibility of the use of novel scAAV vectors for achieving high-efficiency transduction of HSCs as well as erythroid lineage-restricted expression of a therapeutic gene for the potential gene therapy of beta-thalassemia and sickle cell disease.


Neonatology | 2010

Differences between Newborn and Adult Mice in Their Response to Immune Thrombocytopenia

Zhongbo Hu; William B. Slayton; Lisa M. Rimsza; Matthew Bailey; Hannes Sallmon; Martha Sola-Visner

Background: Sick neonates frequently develop severe thrombocytopenia. Objective and Methods: In order to test the ability of fetal mice to increase their megakaryocyte size and ploidy in response to thrombocytopenia, we injected an antiplatelet antibody (MWReg30) into pregnant mice daily for 7 days, and into nonpregnant adult mice to serve as controls. After that time, platelet counts were obtained and megakaryocytes in the bone marrow, liver, and spleen were stained with anti-von Willebrand factor antibody, individually measured, and quantified. Results: Our study demonstrated that megakaryocytopoiesis in newborn mice shares many features of human fetal/neonatal megakaryocytopoiesis, including the small size of megakaryocytes. In response to thrombocytopenia, adult mice increased megakaryocyte volume and concentration, primarily in the spleen. Newborn mice, in contrast, increased the megakaryocyte concentration in the spleen, but exhibited no increase in megakaryocyte volume in any of the organs studied. In fact, the megakaryocyte mass was significantly lower in the bone marrow of thrombocytopenic neonates than in age-matched controls. Conclusions: We concluded that fetuses have a limited ability to increase their megakaryocyte mass in response to consumptive thrombocytopenia, compared to adult mice. These observations provide further evidence for the existence of biological differences between fetal/neonatal and adult megakaryocytopoiesis.


Frontiers in Oncology | 2014

Integrin VLA-5 and FAK are Good Targets to Improve Treatment Response in the Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia.

Zhongbo Hu; William B. Slayton

Acute lymphoblastic leukemia bearing the Philadelphia chromosome is among the most difficult types of ALL to cure. However, the advent of targeted tyrosine kinase inhibitor (TKI) imatinib has ushered in a new era of treatments that have the potential to be less toxic to patients. Integrins and tyrosine kinases play important roles in mediating and transducing signals for cell survival and suppressing apoptosis. Focal adhesion kinase (FAK) is a non-receptor type tyrosine kinase that is constitutively activated in Ph+ ALL. We sought to investigate the specificity of integrin α5β1 (VLA-5) on Ph+ leukemia by its expression and function. We found VLA-5 expression increases after serum starvation. Integrin α5 inhibitory antibody inhibited adhesion of Ph+ leukemia to human fibronectin and acted synergistically with imatinib to induce Ph+ leukemia cell apoptosis. We used different strategies to block integrin signaling and knocked down the expression of integrin VLA-5 to observe the effect on proliferation and engraftment of Ph+ leukemia cells in immunodeficient mice. We found that blocking integrin activity by incubating Ph+ leukemia cells with disintegrin, a peptide inhibitor of integrins, or α5 inhibitory antibody, or knocking down the α5 integrin subunit impaired and delayed the engraftment of Ph+ leukemia in immunodeficient mice. We then treated mice xenografted with Ph+ leukemia cells with the FAK inhibitor TAE226 in combination with a BCR–ABL TKI nilotinib. While 2 weeks of treatment with TAE226 alone did not significantly inhibit leukemia growth in mice, TAE226 in combination with nilotinib provided the most optimum growth inhibition at 4–6 weeks. We conclude that blocking VLA-5 signaling or combining FAK inhibitors with TKI targeting BCL/ABL might be good strategies to improve treatments in patients with Ph+ ALL. By altering Ph+ leukemia cell interactions with the microenvironment, we may increase their susceptibility to therapy targeting BCR/ABL.


Experimental Hematology | 2010

Intrinsic and extrinsic effects of mafG deficiency on hematopoietic recovery following bone marrow transplant

Xiaomiao Li; Zhongbo Hu; Abu-Bakr Zafar; Marda Jorgensen; Jörg Bungert; William B. Slayton

OBJECTIVE MafG is the small subunit of the transcription factor NF-E2 that controls terminal megakaryocyte maturation and platelet release. Studies were conducted to evaluate the intrinsic and extrinsic effects of mafG deficiency on bone marrow engraftment kinetics. MATERIALS AND METHODS We used mafG knockout mice either as donors or recipients in bone marrow transplantations with wild-type mice and compared the engraftment kinetics to transplantations using wild-type donors and recipients. We measured peripheral cell counts, the presence of circulating donor-derived cells by flow cytometry, changes in the cellularity of the bone marrow and splenic weight on day 5, 7, 14, and 1 month post-transplantation. RESULTS Compared to wild-type recipients, mafG recipients had delayed platelet and leukocyte recovery and lower spleen weight at early time points after transplantation. Intrinsic effects: When mafG-deficient bone marrow served as donor source, we observed more rapid recovery of bone marrow cellularity and increased splenic hematopoiesis. The finding of increased short-term hematopoietic stem cells and progenitors in the mafG-deficient bone marrow could explain the accelerated hematopoietic recovery after transplantation. Furthermore, the expression of Bach 2, which can form a heterodimer with mafG protein, was found to be greatly reduced, while Notch 1 expression was increased in mafG-deficient mice. Extrinsic effects: When mafG-deficient mice were transplant recipients, there were delays in recovery of normal levels of marrow and splenic hematopoiesis as well as circulating leukocytes and platelets. CONCLUSIONS Our study demonstrates that mafG expression has intrinsic and extrinsic effects on hematopoietic engraftment following bone marrow transplantation.

Collaboration


Dive into the Zhongbo Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph E. Italiano

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi-Jian Liu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge