Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongdong Dong is active.

Publication


Featured researches published by Zhongdong Dong.


Plant Biotechnology Journal | 2017

Genome‐wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China

Congwei Sun; Xuefang Yan; Xiangfen Zhang; Zhongdong Dong; Dangqun Cui; Feng Chen

Summary Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield‐related traits in series of genome‐wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high‐quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length‐related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height‐related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield‐related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length‐ and plant height‐related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield‐related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield‐related traits and valuable genetic loci for marker‐assisted selection in Chinese wheat breeding programme.


Journal of the Science of Food and Agriculture | 2013

Alveograph and Mixolab parameters associated with Puroindoline-D1 genes in Chinese winter wheats

Feng Chen; Huanhuan Li; Xiangnan Li; Zhongdong Dong; Aihui Zuo; Xiaoli Shang; Dangqun Cui

BACKGROUND Grain texture is one of the most important characteristics of bread wheat and has a significant influence on end-use qualities. RESULTS Forty-three Chinese cultivars were tested under three environments and used to characterise kernel hardness, Puroindoline-D1 alleles and Alveograph and Mixolab parameters. The results indicated that SKCS hardness was positively correlated with Alveograph tenacity and P/L and Mixolab protein weakening (C2) and water absorption and negatively correlated with Mixolab starch gelatinisation (C3), amylasic activity (C4) and starch gelling (C5). Variance analysis showed that Puroindoline-D1 had a significant impact on SKCS hardness and most Alveograph and Mixolab parameters. Furthermore, among three Puroindoline-D1 genotypes, PINA-null/Pinb-D1a possessed the highest SKCS hardness, Alveograph tenacity and W and Mixolab stability and water absorption but the lowest Alveograph extensibility and G and Mixolab C3, C4 and C5. Pina-D1a/Pinb-D1a had the lowest SKCS hardness, Alveograph tenacity and W and Mixolab C2, water absorption and stability but the highest Alveograph extensibility and G and Mixolab C3, C4 and C5. Pina-D1a/Pinb-D1b possessed the lowest Mixolab C2 - C1, C3 - C2, C4 - C3 and C5 - C4. CONCLUSION Pina-D1a/Pinb-D1a was softer and had lower tenacity and water absorption. PINA-null/Pinb-D1a was harder and had higher tenacity and water absorption. Pina-D1a/Pinb-D1b had lower difference values among Mixolab parameters.


PLOS ONE | 2015

Combined Small RNA and Degradome Sequencing Reveals Novel MiRNAs and Their Targets in the High-Yield Mutant Wheat Strain Yunong 3114

Feng Chen; Xiangfen Zhang; Ning Zhang; Shasha Wang; Guihong Yin; Zhongdong Dong; Dangqun Cui

Wheat is one of the main food sources worldwide; large amount studies have been conducted to improve wheat production. MicroRNAs (miRNAs) with about 20–30 nucleotide are a class of regulatory small RNAs (sRNAs), which could regulate gene expression through sequence-specific base pairing with target mRNAs, playing important roles in plant growth. An ideal plant architecture (IPA) is crucial to enhance yield in bread wheat. In this study, the high-yield wheat strain Yunong 3114 was EMS-mutagenesis from the wild-type strain Yunong 201, exhibiting a preferable plant structure compared with the wild-type strain. We constructed small RNA and degradome libraries from Yunong 201 and Yunong 3114, and performed small RNA sequencing of these libraries in order identify miRNAs and their targets related to IPA in wheat. Totally, we identified 488 known and 837 novel miRNAs from Yunong 3114 and 391 known and 533 novel miRNAs from Yunong 201. The number of miRNAs in the mutant increased. A total of 37 known and 432 putative novel miRNAs were specifically expressed in the mutant strain; furthermore, 23 known and 159 putative novel miRNAs were specifically expressed in the wild-type strain. A total of 150 known and 100 novel miRNAs were differentially expressed between mutant and wild-type strains. Among these differentially expressed novel miRNAs, 4 and 8 predict novel miRNAs were evidenced by degradome sequencing and showed up-regulated and down-regulated expressions in the mutant strain Yunong 3114, respectively. Targeted gene annotation and previous results indicated that this set of miRNAs is related to plant structure. Our results further suggested that miRNAs may be necessary to obtain an optimal wheat structure.


Frontiers in Plant Science | 2016

Identification and Comparative Analysis of microRNA in Wheat (Triticum aestivum L.) Callus Derived from Mature and Immature Embryos during In vitro Culture

Zongli Chu; Junying Chen; Haixia Xu; Zhongdong Dong; Feng Chen; Dangqun Cui

Feasible and efficient tissue culture plays an important role in plant genetic engineering. Wheat (Triticum aestivum L.) immature embryos (IMEs) are preferred for tissue culture to mature embryos (MEs) because IMEs easily generate embryogenic callus, producing large number of plants. The molecular mechanisms of regulation and the biological pathways involved in embryogenic callus formation in wheat remain unclear. Here, microRNAs (miRNAs) potentially involved in embryogenic callus formation and somatic embryogenesis were identified through deep sequencing of small RNAs (sRNAs) and analyzed with bioinformatics tools. Six sRNA libraries derived from calli of IMEs and MEs after 3, 6, or 15 d of culture (DC) were constructed and sequenced. A total of 85 known miRNAs were identified, of which 30, 33, and 18 were differentially expressed (P < 0.05) between the IME and ME libraries at 3, 6, and 15 DC, respectively. Additionally, 171 novel and 41 candidate miRNAs were also identified, of the novel miRNA, 69, 67, and 37 were differentially expressed (P < 0.05) between the two types of libraries at 3, 6, and 15 DC, respectively. The expression patterns of eight known and eight novel miRNAs were validated using quantitative real-time polymerase chain reaction. Gene ontology annotation of differentially expressed miRNA targets provided information regarding the underlying molecular functions, biological processes, and cellular components involved in embryogenic callus development. Functional miRNAs, such as miR156, miR164, miR1432, miR398, and miR397, differentially expressed in IMEs and MEs might be related to embryogenic callus formation and somatic embryogenesis. This study suggests that miRNA plays an important role in embryogenic callus formation and somatic embryogenesis in wheat, and our data provide a useful resource for further research.


Gene | 2016

Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line.

Ning Zhang; Shasha Wang; Xiangfen Zhang; Zhongdong Dong; Feng Chen; Dangqun Cui

Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics.


Genetic Resources and Crop Evolution | 2013

Molecular characterization and diversity of puroindoline b-2 variants in cultivated and wild diploid wheat

Feng Chen; Xiaoli Shang; Craig F. Morris; Zhongdong Dong; Dandqun Cui

Cloning and phylogenetic analysis of puroindoline b-2 variants in common wheat (Triticum aestivum L.) and its relatives would advance the understanding of the genetic diversity and evolution of puroindoline b-2 gene in common wheat and its related species. In the present study, common wheat (AABBDD) and four related species, including T.urartu (AuAu), Aegilops speltoides (SS), Ae. tauschii (DD), and T. turgidum (AABB) were sampled for the presence of novel alleles at Pinb2v-A1, Pinb2v-B1/Pinb2v-S1 and Pinb2v-D1 loci corresponding to common wheat puroindoline b-2 variants. Nine new alleles were identified at these loci, designated Pinb2v-A1a through Pinb2v-A1c, Pinb2v-S1a through Pinb2v-S1e, and Pinb2v-D1a. Alignment of puroindoline variants or alleles from common wheat and its relatives indicated that all alleles in diploid wheats are attributed to single nucleotide substitution when compared with puroindoline b-2 variants in polyploids. Deduced amino acid sequences showed that all three alleles at Pinb2v-A1 locus and four alleles (Pinb2v-S1a, Pinb2v-S1b, Pinb2v-S1c and Pinb2v-S1e) at the Pinb2v-S1 locus could not be normally translated due to the presence of premature stop codons, whereas Pinb2v-D1a at the Pinb2v-D1 locus and Pinb2v-S1d at the Pinb2v-S1 locus could be normally translated, possibly suggesting that the puroindoline b-2 variant in Ae. tauschii was more highly conserved than those in T. urartu and Ae. speltoides. Meanwhile, puroindoline b-2 variant could be normally translated in all of the durum and common wheat cultivars surveyed. None of the puroindoline b-2 alleles previously identified in durum and common wheat were found in the diploid genome donors examined here, even though a greater diversity of alleles were found in diploid wheat compared to polyploid wheat. These results likely reflect the evolutionary history of tetraploid and hexaploid wheats, although it may be that puroindoline b-2 variant alleles have been selected for stability and functionality in common and durum wheat. This study provides a survey of puroindoline b-2 variants in common wheat and its relatives, and provides useful information for understanding the genetic diversity of puroindoline-like genes and their duplication events in wheat.


Frontiers in Plant Science | 2016

High-Throughput Sequencing Reveals Single Nucleotide Variants in Longer-Kernel Bread Wheat.

Feng Chen; Zibo Zhu; Xiaobian Zhou; Yan Yan; Zhongdong Dong; Dangqun Cui

The transcriptomes of bread wheat Yunong 201 and its ethyl methanesulfonate derivative Yunong 3114 were obtained by next-sequencing technology. Single nucleotide variants (SNVs) in the wheat strains were explored and compared. A total of 5907 and 6287 non-synonymous SNVs were acquired for Yunong 201 and 3114, respectively. A total of 4021 genes with SNVs were obtained. The genes that underwent non-synonymous SNVs were significantly involved in ATP binding, protein phosphorylation, and cellular protein metabolic process. The heat map analysis also indicated that most of these mutant genes were significantly differentially expressed at different developmental stages. The SNVs in these genes possibly contribute to the longer kernel length of Yunong 3114. Our data provide useful information on wheat transcriptome for future studies on wheat functional genomics. This study could also help in illustrating the gene functions of the non-synonymous SNVs of Yunong 201 and 3114.


bioRxiv | 2014

Different profile of transcriptome between wheat Yunong 201 and its high-yield mutant Yunong 3114

Feng Chen; Zhongdong Dong; Ning Zhang; Xiangfen Zhang; Dangqun Cui

Wheat is one of the most important crops in the world. With the exponentially increasing population and the need for ever increased food and feed production, an increased yield of wheat grain (as well as rice, maize and other grains) will be critical. Modern technologies are utilized to assist breeding programs. Such as the transcriptome sequencing, which greatly improves our genetic understanding, provides a platform for functional genomics research on crops. Herein, to get an overview of transcriptome characteristics of Yunong 3114, which is screened from the EMS mutagenized population of, a high quality Chinese winter noodle wheat, due to its different plant architecture as well as larger kernel size and higher grain weight, a high-throughput RNA sequencing based on next generation sequencing technology (Illumina) were performed. These unigenes were annotated by Blastx alignment against the NCBI non-redundant (nr), Clusters of orthologous groups (COG), gene orthology (GO), and the Kyoto Encyclopedia of Genesand Genomes (KEGG) databases. The 90.96% of the unigenes matched with protein in the NCBI nr database. Functional analysis identified that changes in several GO categories, including recognition of pollen, apoptotic process, defense response, receptor activity, protein kinase activity, DNA integration and so forth, played crucial roles in the high-yield characteristics of the mutant. Real-time PCR analysis revealed that the recognition of pollen related gene GsSRK is significantly up-regulated in Yunong 3114. In addition, alternative splicing (AS) analysis results indicated that mutation influence AS ratio, especially the retained introns, including the pollen related genes. Furthermore, the digital gene expression spectrum (DGE) profiling data provides comprehensive information at the transcriptional level that facilitates our understanding of the molecular mechanisms of various physiological aspects including development and high-yield of wheat. Together, these studies substantially increase our knowledge of potential genes and pathways for the genetic improvement of wheat and provide new insights into the yield and breeding strategies.


Journal of Cereal Science | 2010

Association of Puroindoline b-B2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of the Yellow and Huai Valleys of China.

Feng Chen; Xiyong Cheng; Craig F. Morris; Haixia Xu; Zhongdong Dong; Kehui Zhan; Dangqun Cui


Molecular Breeding | 2012

Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein

Feng Chen; Xianchun Xia; Zhongdong Dong; Dangqun Cui

Collaboration


Dive into the Zhongdong Dong's collaboration.

Top Co-Authors

Avatar

Dangqun Cui

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Feng Chen

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haixia Xu

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kehui Zhan

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiangfen Zhang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiyong Cheng

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ning Zhang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junying Chen

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shasha Wang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Shang

Henan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge