Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongjie Fu is active.

Publication


Featured researches published by Zhongjie Fu.


Investigative Ophthalmology & Visual Science | 2009

Effect of Lutein on Retinal Neurons and Oxidative Stress in a Model of Acute Retinal Ischemia/Reperfusion

Suk-Yee Li; Zhongjie Fu; Huan Ma; Wai-Chi Jang; Kf So; David Wong; Amy C. Y. Lo

PURPOSE Retinal ischemia/reperfusion (I/R) occurs in many ocular diseases and leads to neuronal death. Lutein, a potent antioxidant, is used to prevent severe visual loss in patients with early age-related macular degeneration (AMD), but its effect on I/R insult is unclear. The objective of the present study is to investigate the neuroprotective effect of lutein on retinal neurons after acute I/R injury. METHODS Unilateral retinal I/R was induced by the blockade of internal carotid artery using intraluminal method in mice. Ischemia was maintained for 2 hours followed by 22 hours of reperfusion, during which either lutein or vehicle was administered. The number of viable retinal ganglion cells (RGC) was quantified. Apoptosis was investigated using TUNEL assay. Oxidative stress was elucidated using markers such as nitrotyrosine (NT) and poly(ADP-ribose) (PAR). RESULTS In vehicle-treated I/R retina, severe cell loss in ganglion cell layer, increased apoptosis as well as increased NT and nuclear PAR immunoreactivity were observed. In lutein-treated I/R retina, significantly less cell loss, decreased number of apoptotic cells, and decreased NT and nuclear PAR immunoreactivity were seen. CONCLUSIONS The neuroprotective effect of lutein was associated with reduced oxidative stress. Lutein has been hitherto used principally for protection of outer retinal elements in AMD. Our study suggests that it may also be relevant for the protection of inner retina from acute ischemic damage.


Oxidative Medicine and Cellular Longevity | 2012

Hypoxia-induced oxidative stress in ischemic retinopathy.

Suk-Yee Li; Zhongjie Fu; Amy C. Y. Lo

Oxidative stress plays a crucial role in the pathogenesis of retinal ischemia/hypoxia, a complication of ocular diseases such as diabetic retinopathy (DR) and retinopathy of prematurity (ROP). Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidative systems. Free radicals and ROS are implicated in the irreversible damage to cell membrane, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Anti-oxidants that can inhibit the oxidative processes can protect retinal cells from ischemic/hypoxic insults. In particular, treatment using anti-oxidants such as vitamin E and lutein, inhibition of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) or related signaling pathways, and administration of catalase and superoxide dismutase (SOD) are possible therapeutic regimens for DR, ROP, and other retinal ischemic diseases. The role of oxidative stress in the pathogenesis of DR and ROP as well as the underlying mechanisms involved in the hypoxia/ischemia-induced oxidative damage is discussed. The information provided will be beneficial in understanding the underlying mechanisms involved in the pathogenesis of the diseases as well as in developing effective therapeutic interventions to treat oxidative stress-induced damages.


Investigative Ophthalmology & Visual Science | 2012

Anti-Inflammatory Effects of Lutein in Retinal Ischemic/Hypoxic Injury: In Vivo and In Vitro Studies

Suk-Yee Li; Frederic K. C. Fung; Zhongjie Fu; David Wong; Henry H. L. Chan; Amy C. Y. Lo

PURPOSE Lutein protects retinal neurons by its anti-oxidative and anti-apoptotic properties in ischemia/reperfusion (I/R) injury while its anti-inflammatory effects remain unknown. As Müller cells play a critical role in retinal inflammation, the effect of lutein on Müller cells was investigated in a murine model of I/R injury and a culture model of hypoxic damage. METHODS Unilateral retinal I/R was induced by a blockade of internal carotid artery using the intraluminal method in mice. Ischemia was maintained for 2 hours followed by 22 hours of reperfusion, during which either lutein (0.2 mg/kg) or vehicle was administered. Flash electroretinogram (flash ERG) and glial fibrillary acidic protein (GFAP) activation were assessed. Luteins effect on Müller cells was further evaluated in immortalized rat Müller cells (rMC-1) challenged with cobalt chloride-induced hypoxia. Levels of IL-1β, cyclooxygenase-2 (Cox-2), TNFα, and nuclear factor-NF-kappa-B (NF-κB) were examined by Western blot analysis. RESULTS Lutein treatment minimized deterioration of b-wave/a-wave ratio and oscillatory potentials as well as inhibited up-regulation of GFAP in retinal I/R injury. In cultured Müller cells, lutein treatment increased cell viability and reduced level of nuclear NF-κB, IL-1β, and Cox-2, but not TNFα after hypoxic injury. CONCLUSIONS Reduced gliosis in I/R retina was observed with lutein treatment, which may contribute to preserved retinal function. Less production of pro-inflammatory factors from Müller cells suggested an anti-inflammatory role of lutein in retinal ischemic/hypoxic injury. Together with our previous studies, our results suggest that lutein protected the retina from ischemic/hypoxic damage by its anti-oxidative, anti-apoptotic, and anti-inflammatory properties.


Nature Medicine | 2016

Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1

Jean-Sebastien Joyal; Ye Sun; Marin L. Gantner; Zhuo Shao; Lucy Evans; Nicholas Saba; Thomas Fredrick; Samuel Burnim; Jin Sung Kim; Gauri Patel; Aimee M. Juan; Christian G. Hurst; Colman J. Hatton; Zhenghao Cui; Kerry A. Pierce; Patrick Bherer; Edith Aguilar; Michael B. Powner; Kristis Vevis; Michel Boisvert; Zhongjie Fu; Emile Levy; Marcus Fruttiger; Alan Packard; Flavio Rezende; Bruno Maranda; Przemyslaw Sapieha; Jing Chen; Martin Friedlander; Clary B. Clish

Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy–consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr−/− mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr−/− photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr−/− retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.


Neurobiology of Disease | 2012

Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke.

Suk-Yee Li; Di Yang; Zhongjie Fu; Tiffany T.Y. Woo; David Wong; Amy C. Y. Lo

INTRODUCTION Stroke is one of the leading causes of death worldwide. Protective agents that could diminish the injuries induced by cerebral ischemia/reperfusion (I/R) are crucial to alleviate the detrimental outcome of stroke. The aim of this study is to investigate the protective roles of lutein in cerebral I/R injury. METHODS Two-hour cerebral ischemia was induced by unilateral middle cerebral artery occlusion (MCAo) in mice. Either lutein (0.2 mg/kg) or vehicle was given to mice intraperitoneally 1h after MCAo and 1h after reperfusion. Neurological deficits were evaluated at 22 h after reperfusion while survival rate was assessed daily until 7 days after reperfusion. Brains were cut into 2mm-thick coronal slices and stained with 2% 2,3,5-triphenyltetrazolium chloride to determine the infarct size after MCAo. Paraffin-embedded brain sections were prepared for TUNEL assay and immunohistochemistry. Protein lysate was collected for Western blotting experiments. RESULTS Higher survival rate, better neurological scores, smaller infarct area and smaller infarct volume were noted in the lutein-treated group. Immunohistochemistry data showed a decrease of immunoreactivity of nitrotyrosine, poly(ADP-ribose) and NFκB in the lutein-treated brains. Western blotting data showed decreased levels of Cox-2, pERK, and pIκB, but increased levels of Bcl-2, heat shock protein 70 and pAkt in the lutein-treated brains. CONCLUSIONS Post-treatment of lutein protected the brain from I/R injury, probably by its anti-apoptotic, anti-oxidative and anti-inflammatory properties. These suggest that lutein could diminish the deleterious outcomes of cerebral I/R and may be used as a potential treatment for stroke patients.


The American Journal of Clinical Nutrition | 2015

Dietary ω-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose–endoplasmic reticulum stress reduction to increase adiponectin

Zhongjie Fu; Chatarina Löfqvist; Zhuo Shao; Ye Sun; Jean-Sebastien Joyal; Christian G. Hurst; Ricky Zhenghao Cui; Lucy Evans; Katherine Tian; John Paul SanGiovanni; Jing Chen; David Ley; Ingrid Hansen Pupp; Ann Hellström; Lois E. H. Smith

BACKGROUND Retinopathy of prematurity (ROP) is a vision-threatening disease in premature infants. Serum adiponectin (APN) concentrations positively correlate with postnatal growth and gestational age, important risk factors for ROP development. Dietary ω-3 (n-3) long-chain polyunsaturated fatty acids (ω-3 LCPUFAs) suppress ROP and oxygen-induced retinopathy (OIR) in a mouse model of human ROP, but the mechanism is not fully understood. OBJECTIVE We examined the role of APN in ROP development and whether circulating APN concentrations are increased by dietary ω-3 LCPUFAs to mediate the protective effect in ROP. DESIGN Serum APN concentrations were correlated with ROP development and serum ω-3 LCPUFA concentrations in preterm infants. Mouse OIR was then used to determine whether ω-3 LCPUFA supplementation increases serum APN concentrations, which then suppress retinopathy. RESULTS We found that in preterm infants, low serum APN concentrations positively correlate with ROP, and serum APN concentrations positively correlate with serum ω-3 LCPUFA concentrations. In mouse OIR, serum total APN and bioactive high-molecular-weight APN concentrations are increased by ω-3 LCPUFA feed. White adipose tissue, where APN is produced and assembled in the endoplasmic reticulum, is the major source of serum APN. In mouse OIR, adipose endoplasmic reticulum stress is increased, and APN production is suppressed. ω-3 LCPUFA feed in mice increases APN production by reducing adipose endoplasmic reticulum stress markers. Dietary ω-3 LCPUFA suppression of neovascularization is reduced from 70% to 10% with APN deficiency. APN receptors localize in the retina, particularly to pathologic neovessels. CONCLUSION Our findings suggest that increasing APN by ω-3 LCPUFA supplementation in total parental nutrition for preterm infants may suppress ROP.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Cytochrome P450 2C8 ω3-Long-Chain Polyunsaturated Fatty Acid Metabolites Increase Mouse Retinal Pathologic Neovascularization—Brief Report

Zhuo Shao; Zhongjie Fu; Andreas Stahl; Jean-Sebastien Joyal; Colman J. Hatton; Aimee Juan; Christian G. Hurst; Lucy Evans; Zhenghao Cui; Dorothy T. Pei; Yan Gong; Dan Xu; Katherine Tian; Hannah H Bogardus; Matthew L. Edin; Fred B. Lih; Przemyslaw Sapieha; Jing Chen; Dipak Panigrahy; Ann Hellström; Darryl C. Zeldin; Lois E. H. Smith

Objective— Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary &ohgr;3-long-chain polyunsaturated fatty acids (&ohgr;3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. Approach and Results— The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a &ohgr;3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8–overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both &ohgr;3LCPUFA and &ohgr;6LCPUFA and antiangiogenic role of sEH in &ohgr;3LCPUFA metabolism were corroborated in aortic ring assays. Conclusions— Our results suggest that CYP2C &ohgr;3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.


PLOS ONE | 2015

Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice

Yan Gong; Jie Li; Ye Sun; Zhongjie Fu; Chi-Hsiu Liu; Lucy Evans; Katherine Tian; Nicholas Saba; Thomas Fredrick; Peyton Morss; Jing Chen; Lois E. H. Smith

The mouse model of laser-induced choroidal neovascularization (CNV) has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.


Investigative Ophthalmology & Visual Science | 2012

Aldose reductase deficiency reduced vascular changes in neonatal mouse retina in oxygen-induced retinopathy.

Zhongjie Fu; Suk-Yee Li; Norbert Kociok; David Wong; Sookja K. Chung; Amy C. Y. Lo

PURPOSE Retinal neovascularization is the major pathologic process in many ocular diseases and is associated with oxidative stress. Deficiency of aldose reductase (AR), the first enzyme in the polyol pathway for glucose metabolism, has been shown to reduce oxidative stress and blood vessel leakage. The present study aimed to investigate the effect of AR deficiency on retinal neovascularization in a murine oxygen-induced retinopathy (OIR) model. METHODS Seven-day-old wild-type (WT) and AR-deficient (AR(-/-)) mice were exposed to 75% oxygen for 5 days and then returned to room air. Vascular obliteration, neovascularization, and blood vessel leakage were analyzed and compared. Immunohistochemistry for AR, nitrotyrosine (NT), poly(ADP-ribose) (PAR), glial fibrillary acidic protein (GFAP), and Iba-1, as well as Western blots for vascular endothelial growth factor (VEGF), phospho-Erk (p-Erk), phospho-Akt (p-Akt), and phospho-IκB (p-IκB) were performed. RESULTS Compared with WT OIR retinae, AR(-/-) OIR retinae displayed significantly smaller central retinal vaso-obliterated area, less neovascularization, and reduced blood vessel leakage. Significantly reduced oxidative stress and glial responses were also observed in AR(-/-) OIR retinae. Moreover, reduced microglial response in the avascular area but increased microglial responses in the neovascular area were found with AR deficiency. Furthermore, expression levels of VEGF, p-Erk, p-Akt, and p-IκB were significantly reduced in AR(-/-) OIR retinae. CONCLUSIONS Our observations indicated that AR deficiency reduced retinal vascular changes in the mouse model of OIR, indicating that AR can be a potential therapeutic target in ischemia-induced retinopathy.


Biochimica et Biophysica Acta | 2016

Review: adiponectin in retinopathy.

Zhongjie Fu; Yan Gong; Chatarina Löfqvist; Ann Hellström; Lois E. H. Smith

Neovascular eye diseases are a major cause of blindness including retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration in which new vessel formation is driven by hypoxia or metabolic abnormalities affecting the fuel supply. White-adipose-tissue derived adipokines such as adiponectin modulate metabolic responses. Increasing evidence shows that lack of adiponectin may result in retinal neovascularization. Activation of the adiponectin pathway may in turn restore energy metabolism, to suppress the drive for compensatory but ultimately pathological neovessels of retinopathy. In this review, we will summarize our current knowledge of the role of adiponectin in eye diseases of premature infants, diabetic patients as well as the elderly. Further investigations in this field are likely to lead to new preventative approaches for these diseases.

Collaboration


Dive into the Zhongjie Fu's collaboration.

Top Co-Authors

Avatar

Lois E. H. Smith

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yan Gong

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ann Hellström

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Jing Chen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Samuel Burnim

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Steven Meng

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ye Sun

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas Fredrick

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nicholas Saba

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Chi-Hsiu Liu

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge