Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhonglin Xie is active.

Publication


Featured researches published by Zhonglin Xie.


Diabetes | 2013

Dissociation of Bcl-2–Beclin1 Complex by Activated AMPK Enhances Cardiac Autophagy and Protects Against Cardiomyocyte Apoptosis in Diabetes

Chaoyong He; Huaiping Zhu; Hongliang Li; Ming-Hui Zou; Zhonglin Xie

Diabetic cardiomyopathy is associated with suppression of cardiac autophagy, and activation of AMP-activated protein kinase (AMPK) restores cardiac autophagy and prevents cardiomyopathy in diabetic mice, albeit by an unknown mechanism. We hypothesized that AMPK-induced autophagy ameliorates diabetic cardiomyopathy by inhibiting cardiomyocyte apoptosis and examined the effects of AMPK on the interaction between Beclin1 and Bcl-2, a switch between autophagy and apoptosis, in diabetic mice and high glucose–treated H9c2 cardiac myoblast cells. Exposure of H9c2 cells to high glucose reduced AMPK activity, inhibited Jun NH2-terminal kinase 1 (JNK1)–B-cell lymphoma 2 (Bcl-2) signaling, and promoted Beclin1 binding to Bcl-2. Conversely, activation of AMPK by metformin stimulated JNK1–Bcl-2 signaling and disrupted the Beclin1–Bcl-2 complex. Activation of AMPK, which normalized cardiac autophagy, attenuated high glucose–induced apoptosis in cultured H9c2 cells. This effect was attenuated by inhibition of autophagy. Finally, chronic administration of metformin in diabetic mice restored cardiac autophagy by activating JNK1–Bcl-2 pathways and dissociating Beclin1 and Bcl-2. The induction of autophagy protected against cardiac apoptosis and improved cardiac structure and function in diabetic mice. We concluded that dissociation of Bcl-2 from Beclin1 may be an important mechanism for preventing diabetic cardiomyopathy via AMPK activation that restores autophagy and protects against cardiac apoptosis.


American Journal of Physiology-endocrinology and Metabolism | 2012

Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice

Hongliang Li; Mingjiang Xu; Jiyeon Lee; Chaoyong He; Zhonglin Xie

Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD(+) levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity.


American Journal of Pathology | 2013

7-Ketocholesterol Induces Autophagy in Vascular Smooth Muscle Cells through Nox4 and Atg4B

Chaoyong He; Huaiping Zhu; Wencheng Zhang; Imoh S. Okon; Qilong Wang; Hongliang Li; Yun-Zheng Le; Zhonglin Xie

Oxidized lipoproteins stimulate autophagy in advanced atherosclerotic plaques. However, the mechanisms underlying autophagy induction and the role of autophagy in atherogenesis remain to be determined. This study was designed to investigate the mechanisms by which 7-ketocholesterol (7-KC), a major component of oxidized lipoproteins, induces autophagy. This study was also designed to determine the effect of autophagy induction on apoptosis, a central event in the development of atherosclerosis. Exposure of human aortic smooth muscle cells to 7-KC increased autophagic flux. Autophagy induction was suppressed by treating the cells with either a reactive oxygen species scavenger or an antioxidant. Administration of 7-KC concomitantly up-regulated Nox4 expression, increased intracellular hydrogen peroxide levels, and inhibited autophagy-related gene 4B activity. Catalase overexpression to remove hydrogen peroxide or Nox4 knockdown with siRNA reduced intracellular hydrogen peroxide levels, restored autophagy-related gene 4B activity, and consequently attenuated 7-KC-induced autophagy. Moreover, inhibition of autophagy aggravated both endoplasmic reticulum (ER) stress and cell death in response to 7-KC. In contrast, up-regulation of autophagic activity by rapamycin had opposite effects. Finally, activation of autophagy by chronic rapamycin treatment attenuated ER stress, apoptosis, and atherosclerosis in apolipoprotein E knockout (ApoE(-/-)) mouse aortas. In conclusion, we demonstrate that up-regulation of autophagy is a cellular protective response that attenuates 7-KC-induced cell death in human aortic smooth muscle cells.


Biochimica et Biophysica Acta | 2014

AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response

Hongliang Li; Qing Min; Changhan Ouyang; Jiyeon Lee; Chaoyong He; Ming-Hui Zou; Zhonglin Xie

Lipid accumulation is a central event in the development of chronic metabolic diseases, including obesity and type 2 diabetes, but the mechanisms responsible for lipid accumulation are incompletely understood. This study was designed to investigate the mechanisms for excess nutrient-induced lipid accumulation and whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic lipid accumulation in excess nutrient-treated HepG2 cells and high fat diet (HFD)-fed mice. Exposure of HepG2 cells to high levels of glucose or palmitate induced the endoplasmic reticulum (ER) stress response, activated sterol regulatory element-binding protein-1 (SREBP-1), and enhanced lipid accumulation, all of which were sensitive to ER stress inhibitor and gene silencing of eukaryotic initiation factor 2α. The increases in ER stress response and lipid accumulation were associated with activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Inhibition of mTORC1 signaling attenuated the ER stress response and lipid accumulation induced by high glucose or by deletion of tuberous sclerosis 2. In addition, AMPK activation prevented the mTORC1 activation, ER stress response, and lipid accumulation. This effect was mimicked or abrogated, respectively, by overexpression of constitutively active and dominant-negative AMPK mutants. Finally, treatment of HFD-fed mice with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside inhibited the mTORC1 pathway, suppressed the ER stress response, and prevented insulin resistance and hepatic lipid accumulation. We conclude that activation of AMPK prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 and ER stress response.


Diabetes | 2014

Myeloperoxidase Deletion Prevents High-Fat Diet–Induced Obesity and Insulin Resistance

Qilong Wang; Zhonglin Xie; Wencheng Zhang; Jun Zhou; Yue Wu; Miao Zhang; Huaiping Zhu; Ming-Hui Zou

Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high-fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of an HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue, with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO−/−) mice were protected from HFD-enhanced body weight gain and insulin resistance. The MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and expression of proinflammatory cytokines. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance.


Journal of Cellular and Molecular Medicine | 2009

Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase

Yunzhou Dong; Yong Wu; Mingyuan Wu; Shuangxi Wang; Junhua Zhang; Zhonglin Xie; Jian Xu; Ping Song; Kenneth Wilson; Zhengxing Zhao; Timothy J. Lyons; Ming-Hui Zou

Oxidation and glycation of low‐density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of ‘heavily oxidized’ glycated LDL (HOG‐LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG‐LDL reduced eNOS protein levels in a concentration‐ and time‐dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca2+, augmented production of reactive oxygen species (ROS) and induction of Ca2+‐dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca2+ levels abolished eNOS reduction by HOG‐LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1‐specific siRNA). Consistent with these results, HOG‐LDL impaired acetylcholine‐induced endothelium‐dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG‐LDL may impair endothelial function by inducing calpain‐mediated eNOS degradation in a ROS‐ and Ca2+‐dependent manner.


American Journal of Physiology-endocrinology and Metabolism | 2014

Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids

Hongliang Li; Jiyeon Lee; Chaoyong He; Ming-Hui Zou; Zhonglin Xie

Nutrient overload is associated with the development of obesity, insulin resistance, and type 2 diabetes. However, the underlying mechanisms for developing insulin resistance in the presence of excess nutrients are incompletely understood. We investigated whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic insulin resistance that is induced by the consumption of a high-protein diet (HPD) and the presence of excess amino acids. Exposure of HepG2 cells to excess amino acids reduced AMPK phosphorylation, upregulated Notch1 expression, and impaired the insulin-stimulated phosphorylation of Akt Ser(473) and insulin receptor substrate-1 (IRS-1) Tyr(612). Inhibition of Notch1 prevented amino acid-induced insulin resistance, which was accompanied by reduced expression of Rbp-Jk, hairy and enhancer of split-1, and forkhead box O1. Mechanistically, mTORC1 signaling was activated by excess amino acids, which then positively regulated Notch1 expression through the activation of the signal transducer and activator of transcription 3 (STAT3). Activation of AMPK by metformin inhibited mTORC1-STAT3 signaling, thereby preventing excess amino acid-impaired insulin signaling. Finally, HPD feeding suppressed AMPK activity, activated mTORC1/STAT3/Notch1 signaling, and induced insulin resistance. Chronic administration of either metformin or rapamycin inhibited the HPD-activated mTORC1/STAT3/Notch1 signaling pathway and prevented hepatic insulin resistance. We conclude that the upregulation of Notch1 expression by hyperactive mTORC1 signaling is an essential event in the development of hepatic insulin resistance in the presence of excess amino acids. Activation of AMPK prevents amino acid-induced insulin resistance through the suppression of the mTORC1/STAT3/Notch1 signaling pathway.


American Journal of Pathology | 2010

Enhanced Tyrosine Nitration of Prostacyclin Synthase Is Associated with Increased Inflammation in Atherosclerotic Carotid Arteries from Type 2 Diabetic Patients

Chaoyong He; Hyoung Chul Choi; Zhonglin Xie

Prostacyclin synthase (PGIS) is tyrosine nitrated in diseased animals. Whether PGIS nitration occurs in human diabetic atherosclerotic arteries has not been reported. The present study was designed to determine PGIS nitration and its association with the inflammatory response in atherosclerotic carotid arteries from patients with or without type 2 diabetes, and carotid plaques were obtained from patients who underwent carotid endarterectomy. PGIS nitration, nitric oxide synthases, adhesion molecules, myeloperoxidase, osteopontin, and matrix metalloproteinase (MMP) were measured by using immunohistochemistry and Western blotting. In low stenosis areas, diabetes enhanced reactive nitrogen species production, as evidenced by increases in 3-nitrotyrosine and PGIS nitration. In parallel, diabetes dramatically increased inflammatory markers including intracellular adhesion molecule-1, vascular adhesion molecule-1, and osteopontin. In both diabetic and nondiabetic patients, MMP-2 and MMP-9 protein levels were significantly increased in the arteries with high stenosis as compared with those with low stenosis. Moreover, diabetes enhanced inducible nitric oxide synthase expression in the plaques from low stenosis areas and up-regulated myeloperoxidase expression in the plaques from both high and low stenosis areas. These data demonstrate that diabetes preferentially increases PGIS nitration that is associated with excessive vascular inflammation in atherosclerotic carotid arteries from patients with type 2 diabetes, suggesting a possible role of tyrosine nitration of PGIS in the development of atherosclerosis in patients with diabetes.


American Journal of Pathology | 2011

Tyrosine Nitration of Prostacyclin Synthase Is Associated with Enhanced Retinal Cell Apoptosis in Diabetes

Ming-Hui Zou; Hongliang Li; Chaoyong He; Mingkai Lin; Timothy J. Lyons; Zhonglin Xie

The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.


Autophagy | 2014

PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation

Huaiping Zhu; Marc Foretz; Zhonglin Xie; Miao Zhang; Zhiren Zhu; Junjie Xing; Jocelyne Leclerc; Murielle Gaudry; Benoit Viollet; Ming-Hui Zou

AMP-activated protein kinase α1 knockout (prkaa1−/−) mice manifest splenomegaly and anemia. The underlying molecular mechanisms, however, remain to be established. In this study, we tested the hypothesis that defective autophagy-dependent mitochondrial clearance in prkaa1−/− mice exacerbates oxidative stress, thereby enhancing erythrocyte destruction. The levels of ULK1 phosphorylation, autophagical flux, mitochondrial contents, and reactive oxygen species (ROS) were examined in human erythroleukemia cell line, K562 cells, as well as prkaa1−/− mouse embryonic fibroblasts and erythrocytes. Deletion of Prkaa1 resulted in the inhibition of ULK1 phosphorylation at Ser555, prevented the formation of ULK1 and BECN1- PtdIns3K complexes, and reduced autophagy capacity. The suppression of autophagy was associated with enhanced damaged mitochondrial accumulation and ROS production. Compared with wild-type (WT) mice, prkaa1−/− mice exhibited a shortened erythrocyte life span, hemolytic destruction of erythrocytes, splenomegaly, and anemia, all of which were alleviated by the administration of either rapamycin to activate autophagy or Mito-tempol, a mitochondria-targeted antioxidant, to scavenge mitochondrial ROS. Furthermore, transplantation of WT bone marrow into prkaa1−/− mice restored mitochondrial removal, reduced intracellular ROS levels, and normalized hematologic parameters and spleen size. Conversely, transplantation of prkaa1 −/− bone marrow into WT mice recapitulated the prkaa1−/− mouse phenotypes. We conclude that PRKAA1-dependent autophagy-mediated clearance of damaged mitochondria is required for erythrocyte maturation and homeostasis.

Collaboration


Dive into the Zhonglin Xie's collaboration.

Top Co-Authors

Avatar

Chaoyong He

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Ming-Hui Zou

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Hongliang Li

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Huaiping Zhu

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Jiyeon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Miao Zhang

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Qilong Wang

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Wencheng Zhang

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Benoit Viollet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Lyons

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge