Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongmei Zhou is active.

Publication


Featured researches published by Zhongmei Zhou.


Cancer Research | 2010

The Fbw7 Tumor Suppressor Targets KLF5 for Ubiquitin-Mediated Degradation and Suppresses Breast Cell Proliferation

Dong Zhao; Han-Qiu Zheng; Zhongmei Zhou; Ceshi Chen

Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF(Fbw7)) targets KLF5 for ubiquitin-mediated degradation in a GSK3beta-mediated KLF5 phosphorylation-dependent manner. Mutation of the critical S303 residue in the KLF5 Cdc4 phospho-degrons motif ((303)SPPSS) abolishes the protein interaction, ubiquitination, and degradation by Fbw7. Inactivation of endogenous Fbw7 remarkably increases the endogenous KLF5 protein abundances. Endogenous Fbw7 suppresses the FGF-BP gene expression and breast cell proliferation through targeting KLF5 for degradation. These findings suggest that Fbw7 inhibits breast cell proliferation at least partially through targeting KLF5 for proteolysis. This new regulatory mechanism of KLF5 degradation may result in useful diagnostic and therapeutic targets for breast cancer and other cancers.


Cell Death & Differentiation | 2008

WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis

Yi Li; Zhongmei Zhou; Ceshi Chen

WWP1 E3 ubiquitin ligase has previously been shown to be frequently amplified and overexpressed in prostate and breast cancers. However, the mechanism of WWP1 action is still largely unknown. p63, a member of the p53 family of transcription factors, has an important function in tumor development by regulating apoptosis. Using alternative promoters, p63 can be expressed as ΔNp63 and TAp63. Increasing evidence suggests that TAp63 sensitizes cells to apoptosis but ΔNp63 has an opposite function. In this study, we show that WWP1 binds, ubiquitinates, and destructs both ΔNp63α and TAp63α. The protein–protein interaction occurs between the PY motif of p63 and the WW domains of WWP1. The knockdown of WWP1 by siRNA increases the endogenous ΔNp63α level in the MCF10A and 184B5 immortalized breast epithelial cell lines and confers resistance to doxorubicin-induced apoptosis. On the other hand, the knockdown of WWP1 increases the endogenous level of TAp63α, induces apoptosis, and increases sensitivity to doxorubicin and cisplatin in the HCT116 colon cancer cell line in a p53-independent manner. Finally, we found that DNA damage chemotherapeutic drugs induce WWP1 mRNA and protein expression in a p53-dependent manner. These data suggest that WWP1 may have a context-dependent role in regulating cell survival through targeting different p63 proteins for degradation.


International Journal of Cancer | 2007

The amplified WWP1 gene is a potential molecular target in breast cancer

Ceshi Chen; Zhongmei Zhou; Jeffrey S. Ross; Wei Zhou; Jin-Tang Dong

The amplification of the q21 band of chromosome 8 (8q21) occurs in a large percentage of breast cancers. WWP1, an HECT domain‐containing ubiquitin E3 ligase located in the 8q21 region, negatively regulates the TGF‐β tumor suppressor pathway. To characterize the role of WWP1 in breast cancer, we analyzed WWP1 gene dosage and expression level as well as WWP1s function. A copy number gain of WWP1 was found in 51% (18/35) of breast cancer cell lines and in 41% (17/41) of primary breast tumors. Expression of WWP1 mRNA was analyzed with real‐time RT‐PCR, Northern blot, and Western blot. WWP1 mRNA is up‐regulated in 58% (19/33) of breast cancer cell lines, and overexpression of WWP1 is significantly correlated with a gene copy number gain. In a panel of cDNA from primary breast tumors and normal tissues, expression of WWP1 in tumors is significantly higher than that in normal tissues. Functionally, RNAi‐mediated WWP1 knockdown significantly induced cell growth arrest and apoptosis in the MCF7 and HCC1500 breast cancer cell lines. Consistently, WWP1 inhibition activated caspases. Forced overexpression of WWP1 by the lentiviral system in 2 immortalized breast epithelial cell lines MCF10A and 184B5 promoted cell proliferation. These results suggest that genomic aberrations of WWP1 may contribute to the pathogenesis of breast cancer.


Oncogene | 2007

Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer

Ceshi Chen; Xiaodong Sun; Peng Guo; Xue-Yuan Dong; Sethi P; Wei Zhou; Zhongmei Zhou; John A. Petros; Henry F. Frierson; Robert L. Vessella; Atfi A; Jin-Tang Dong

The gene for E3 ubiquitin ligase WWP1 is located at 8q21, a region frequently amplified in human cancers, including prostate cancer. Recent studies have shown that WWP1 negatively regulates the TGFβ tumor suppressor pathway by inactivating its molecular components, including Smad2, Smad4 and TβR1. These findings suggest an oncogenic role of WWP1 in carcinogenesis, but direct supporting evidence has been lacking. In this study, we examined WWP1 for gene dosage, mRNA expression, mutation and functions in a number of human prostate cancer samples. We found that the WWP1 gene had copy number gain in 15 of 34 (44%) xenografts and cell lines from prostate cancer and 15 of 49 (31%) clinical prostate cancer samples. Consistently, WWP1 was overexpressed in 60% of xenografts and cell lines from prostate cancer. Mutation of WWP1 occurred infrequently in prostate cancer. Functionally, WWP1 overexpression promoted colony formation in the 22Rv1 prostate cancer cell line. In PC-3 prostate cancer cells, WWP1 knockdown significantly suppressed cell proliferation and enhanced TGFβ-mediated growth inhibition. These findings suggest that WWP1 is an oncogene that undergoes genomic amplification at 8q21 in human prostate cancer, and WWP1 overexpression is a common mechanism involved in the inactivation of TGFβ function in human cancer.


American Journal of Pathology | 2012

YAP Promotes Breast Cell Proliferation and Survival Partially through Stabilizing the KLF5 Transcription Factor

Xu Zhi; Dong Zhao; Zhongmei Zhou; Rong Liu; Ceshi Chen

The Yes-associated protein (YAP), an oncoprotein in the Hippo tumor suppressor pathway, regulates tumorigenesis and has been found in a variety of tumors, including breast, ovarian, and hepatocellular cancers. Although YAP functions through its WW domains, the YAP WW domain-binding partners have not yet been completely determined. With this study, we demonstrate that YAP functions partially through its binding to KLF5, a transcription factor that promotes breast cell proliferation and survival. YAP interacted with the KLF5 PY motif through its WW domains, preventing the E3 ubiquitin ligase WWP1 from ubiquitinating KLF5. Overexpression of the wild-type YAP but not the WW domain-mutated YAP up-regulated KLF5 protein levels and mRNA expression levels of KLF5 downstream target genes, including FGFBP1 (alias FGF-BP) and ITGB2. In addition, knockdown of YAP decreased expression levels of KLF5, FGF-BP, and ITGB2. Depletion of either YAP or KLF5 decreased breast cell proliferation and survival in MCF10A and SW527 breast cell lines, and stable knockdown of either YAP or KLF5 suppressed SW527 xenograft growth in mice. The YAP upstream kinase LATS1 suppressed the KLF5-FGF-BP axis, as well as cell growth through YAP signaling. Both YAP and KLF5 are coexpressed in estrogen receptor ERα-negative breast cell lines. These findings suggest that KLF5 could be an important transcription factor partner for YAP and may contribute to the Hippo pathway.


Journal of Biological Chemistry | 2009

KLF5 Promotes Breast Cell Survival Partially through Fibroblast Growth Factor-binding Protein 1-pERK-mediated Dual Specificity MKP-1 Protein Phosphorylation and Stabilization

Rong Liu; Han-Qiu Zheng; Zhongmei Zhou; Jin-Tang Dong; Ceshi Chen

Krüpple-like transcription factor 5 (KLF5) is a zinc-finger transcription factor promoting cell survival and tumorigenesis in multiple cancers. A high expression level of KLF5 has been shown to be associated with shorter breast cancer patient survival. However, the role of KLF5 and mechanism of KLF5 actions in breast cancer remain unclear. In this study, we found that KLF5 knockdown by small interfering RNA in two breast cell lines, MCF10A and BT20, induces apoptosis. Interestingly, a pro-survival phosphatase, dual specificity mitogen-activated protein kinase phosphatase 1 (MKP-1), is down-regulated by KLF5 ablation. Consistently, KLF5 overexpression increases the MKP-1 protein expression in Hs578T and MCF7. We further found that MKP-1 is essential and sufficient for KLF5 to promote breast cell survival. However, MKP-1 is not a KLF5 direct transcription target because the MKP-1 mRNA level is not regulated by KLF5. By cycloheximide chase assays, we found that KLF5 decreases MKP-1 protein degradation via activating the ERK signaling. Inhibition of pERK by the pharmacological inhibitor U0126 specifically blocks KLF5-induced MKP-1 phosphorylation and stabilization. Additionally, constitutive activation of ERK by constitutively activated MEK1 rescues the KLF5 depletion-induced MKP-1 down-regulation. Consistently, the phosphorylation-deficient MKP-1 mutant cannot be stabilized by KLF5. Finally, the activation of ERK by KLF5 is very likely through the KLF5 direct target gene FGF-BP in breast cells. These findings suggest that KLF5 is a pro-survival factor that promotes breast cell survival partially through pERK-mediated MKP-1 phosphorylation and stabilization. The KLF5-FGF-BP-pERK-MKP-1 signaling axis may provide new therapeutic targets for invasive breast cancer.


Carcinogenesis | 2012

TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis

Dong Zhao; Xu Zhi; Zhongmei Zhou; Ceshi Chen

Krüppel-like factor 5 (KLF5) is a PY motif-containing transcription factor promoting breast cell proliferation. The KLF5 protein is rapidly degraded through the proteasome after ubiquitination by E3 ubiquitin ligases, such as WWP1 and SCF(Fbw7). In this study, we demonstrated that a transcriptional co-activator with the PDZ-binding motif (TAZ) upregulated the KLF5 expression through antagonizing the WWP1-, but not Fbw7-, mediated KLF5 ubiquitination and degradation. TAZ interacted with KLF5 through the WW domain of TAZ and the PY motif of KLF5, which is the binding site for WWP1. TAZ inhibited WWP1-KLF5 protein interaction and WWP1-mediated KLF5 ubiquitination and degradation in a WW domain-dependent manner. Overexpression of TAZ upregulated the protein levels of KLF5 and FGF-BP, which is a well-established KLF5 target gene. In addition, depletion of TAZ in both 184A1 and HCC1937 breast cells downregulated protein levels of KLF5 and FGF-BP and inhibited cell growth. Furthermore, stable depletion of either TAZ or KLF5 significantly suppressed HCC1937 xenograft growth in immunodeficient mice. Knockdown of LATS1, a TAZ upstream inhibitory kinase, up-regulated the protein levels of KLF5 and FGF-BP in 184A1 and promoted cell growth through TAZ. Finally, both KLF5 and TAZ were co-expressed in a subset of estrogen receptor α-negative breast cell lines. These results, for the first time, suggest that TAZ promotes breast cell growth partially through protecting KLF5 from WWP1-mediated degradation and enhancing KLF5s activities.


Oncogene | 2009

Krüppel-like factor 5 promotes breast cell proliferation partially through upregulating the transcription of fibroblast growth factor binding protein 1

H Q Zheng; Zhongmei Zhou; Jian Huang; L Chaudhury; Jin-Tang Dong; Ceshi Chen

The Krüppel-like factor 5 (KLF5) is a zinc-finger transcription factor promoting cell proliferation, cell-cycle progression and survival. A high expression level of KLF5 mRNA has been shown to be associated with shorter breast cancer patient survival. However, the mechanism of KLF5 action in breast cancer is still not clear. In this study, we found that both KLF5 and its downstream gene fibroblast growth factor binding protein 1 (FGF-BP) are co-expressed in breast cell lines and primary tumors. Manipulation of the KLF5 expression can positively regulate the FGF-BP mRNA and protein levels in multiple breast cell lines. In addition, the secreted FGF-BP protein in the conditional medium is also regulated by KLF5. Furthermore, we demonstrated that KLF5 binds and activates the FGF-BP promoter through a GC box by luciferase reporter, oligo pull down and chromatin immunoprecipitation (ChIP) assays. When FGF-BP is depleted by siRNA, KLF5 fails to promote cell proliferation in MCF10A, SW527 and TSU-Pr1. We further demonstrated that overexpression or addition of FGF-BP rescues the KLF5-knockdown-induced growth arrest in MCF10A cells. Finally, KLF5 significantly promotes MCF7 breast cancer cell xenograft growth in athymic nude mice. These findings suggest that KLF5 may promote breast cancer cell proliferation at least partially through directly activating the FGF-BP mRNA transcription. Understanding the mechanism of KLF5 action in breast cancer may result in useful diagnostic and therapeutic targets.


Oncogene | 2009

WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer

Yong Li; Zhongmei Zhou; M Alimandi; Ceshi Chen

ErbB4, a member of the epidermal growth factor receptor family, plays a role in normal breast and breast cancer development by regulating mammary epithelial cell proliferation, survival and differentiation. In this study, we show that WWP1, a C2-WW-HECT type E3 ubiquitin ligase, binds, ubiquitinates and destructs ErbB4-CYT1, but much less efficiently for CYT2, isoforms (both JMa and JMb). The protein–protein interaction occurs primarily between the first and third WW domains of WWP1 and the second PY motif of ErbB4. Knockdown of WWP1 by two different small interfering RNAs increases the endogenous ErbB4 protein levels in both MCF7 and T47D breast cancer cell lines. In addition, overexpression of the wild type, but not the catalytic inactive WWP1, dramatically decreases the endogenous ErbB4 protein levels in MCF7. Importantly, we found that WWP1 negatively regulates the heregulin-β1-stimulated ErbB4 activity as measured by the serum response element report assay and the BRCA1 mRNA expression. After a systematic screening of all WWP1 family members by small interfering RNA, we found that AIP4/Itch and HECW1/NEDL1 also negatively regulate the ErbB4 protein expression in T47D. Interestingly, the protein expression levels of both WWP1 and ErbB4 are higher in estrogen receptor-α-positive than in estrogen receptor-α-negative breast cancer cell lines. These data suggest that WWP1 and its family members suppress the ErbB4 expression and function in breast cancer.


Molecular Endocrinology | 2011

The Induction of KLF5 Transcription Factor by Progesterone Contributes to Progesterone-Induced Breast Cancer Cell Proliferation and Dedifferentiation

Rong Liu; Zhongmei Zhou; Dong Zhao; Ceshi Chen

Progesterone (Pg) promotes normal breast development during pregnancy and lactation and increases the risk of developing basal-type invasive breast cancer. However, the mechanism of action of Pg has not been fully understood. In this study, we demonstrate that the mRNA and protein expression of Klf5, a pro-proliferation transcription factor in breast cancer, was dramatically up-regulated in mouse pregnant and lactating mammary glands. Pg, but not estrogen and prolactin, induced the expression of Krüpple-like factor 5 (KLF5) in multiple Pg receptor (PR)-positive breast cancer cell lines. Pg induced the KLF5 transcription through PR in the PR-positive T47D breast cancer cells. Pg-activated PR increased the KLF5 promoter activity likely through binding to a Pg response element at the KLF5 promoter. Importantly, Pg failed to promote T47D cell proliferation when the KLF5 induction was blocked by small interfering RNA. KLF5 is essential for Pg to up-regulate the expression of cell cycle genes, including CyclinA, Cdt1, and E2F3. In addition, KLF5 overexpression was sufficient to induce the cytokeratin 5 (CK5) expression, and the induction of CK5 by Pg was significantly reduced by KLF5 small interfering RNA. Consistently, the expression of KLF5 was positively correlated with that of CK5 in a panel of breast cancer cell lines. Taken together, we conclude that KLF5 is a Pg-induced gene that contributes to Pg-mediated breast epithelial cell proliferation and dedifferentiation.

Collaboration


Dive into the Zhongmei Zhou's collaboration.

Top Co-Authors

Avatar

Ceshi Chen

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar

Rong Liu

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Ceshi Chen

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar

Dong Zhao

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar

Wenlin Chen

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Hailin Zhang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Xu Zhi

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar

Chunyan Wang

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Peiguo Shi

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Runxiang Yang

Kunming Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge