Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongying Zhao is active.

Publication


Featured researches published by Zhongying Zhao.


Journal of Biological Chemistry | 2005

Distinct regulatory elements mediate similar expression patterns in the excretory cell of Caenorhabditis elegans.

Zhongying Zhao; Li Fang; Nansheng Chen; Robert C. Johnsen; Lincoln Stein; David L. Baillie

Identification of cis-regulatory elements and their binding proteins constitutes an important part of understanding gene function and regulation. It is well accepted that co-expressed genes tend to share transcriptional elements. However, recent findings indicate that co-expression data show poor correlation with co-regulation data even in unicellular yeast. This motivates us to experimentally explore whether it is possible that co-expressed genes are subject to differential regulatory control using the excretory cell of Caenorhabditis elegans as an example. Excretory cell is a functional equivalent of human kidney. Transcriptional regulation of gene expression in the cell is largely unknown. We isolated a 10-bp excretory cell-specific cis-element, Ex-1, from a pgp-12 promoter. The significance of the element has been demonstrated by its capacity of converting an intestine-specific promoter into an excretory cell-specific one. We also isolated a cDNA encoding an Ex-1 binding transcription factor, DCP-66, using a yeast one-hybrid screen. Role of the factor in regulation of pgp-12 expression has been demonstrated both in vitro and in vivo. Search for occurrence of Ex-1 reveals that only a small portion of excretory cell-specific promoters contain Ex-1. Two other distinct cis-elements isolated from two different promoters can also dictate the excretory cell-specific expression but are independent of regulation by DCP-66. The results indicate that distinct regulatory elements are able to mediate the similar expression patterns.


Scientific Reports | 2015

Illumina Synthetic Long Read Sequencing Allows Recovery of Missing Sequences even in the "Finished" C. elegans Genome.

Runsheng Li; Chia-Ling Hsieh; Amanda Young; Zhihong Zhang; Xiaoliang Ren; Zhongying Zhao

Most next-generation sequencing platforms permit acquisition of high-throughput DNA sequences, but the relatively short read length limits their use in genome assembly or finishing. Illumina has recently released a technology called Synthetic Long-Read Sequencing that can produce reads of unusual length, i.e., predominately around 10 Kb. However, a systematic assessment of their use in genome finishing and assembly is still lacking. We evaluate the promise and deficiency of the long reads in these aspects using isogenic C. elegans genome with no gap. First, the reads are highly accurate and capable of recovering most types of repetitive sequences. However, the presence of tandem repetitive sequences prevents pre-assembly of long reads in the relevant genomic region. Second, the reads are able to reliably detect missing but not extra sequences in the C. elegans genome. Third, the reads of smaller size are more capable of recovering repetitive sequences than those of bigger size. Fourth, at least 40 Kbp missing genomic sequences are recovered in the C. elegans genome using the long reads. Finally, an N50 contig size of at least 86 Kbp can be achieved with 24×reads but with substantial mis-assembly errors, highlighting a need for novel assembly algorithm for the long reads.


PLOS Genetics | 2015

A Genome-Wide Hybrid Incompatibility Landscape between Caenorhabditis briggsae and C. nigoni

Yu Bi; Xiaoliang Ren; Cheung Yan; Jiaofang Shao; Dongying Xie; Zhongying Zhao

Systematic characterization of ẖybrid incompatibility (HI) between related species remains the key to understanding speciation. The genetic basis of HI has been intensively studied in Drosophila species, but remains largely unknown in other species, including nematodes, which is mainly due to the lack of a sister species with which C. elegans can mate and produce viable progeny. The recent discovery of a C. briggsae sister species, C. nigoni, has opened up the possibility of dissecting the genetic basis of HI in nematode species. However, the paucity of dominant and visible marker prevents the efficient mapping of HI loci between the two species. To elucidate the genetic basis of speciation in nematode species, we first generated 96 chromosomally integrated GFP markers in the C. briggsae genome and mapped them into the defined locations by PCR and Next-Generation Sequencing (NGS). Aided by the marker, we backcrossed the GFP-associated C. briggsae genomic fragments into C. nigoni for at least 15 generations and produced 111 independent introgressions. The introgression fragments cover most of the C. briggsae genome. We finally dissected the patterns of HI by scoring the embryonic lethality, larval arrest, sex ratio and male sterility for each introgression line, through which we identified pervasive HI loci and produced a genome-wide landscape of HI between the two nematode species, the first of its type for any non-Drosophila species. The HI data not only provided insights into the genetic basis of speciation, but also established a framework for the possible cloning of HI loci between the two nematode species. Furthermore, the data on hybrids confirmed Haldane’s rule and suggested the presence of a large X effect in terms of fertility between the two species. Importantly, this work opens a new avenue for studying speciation genetics between nematode species and allows parallel comparison of the HI with that in Drosophila and other species.


Nucleic Acids Research | 2014

PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data

Daogang Guan; Jiaofang Shao; Zhongying Zhao; Panwen Wang; Jing Qin; Youping Deng; Kenneth R. Boheler; Junwen Wang; Bin Yan

Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein–protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.


PLOS ONE | 2014

Description of Caenorhabditis sinica sp. n. (Nematoda: Rhabditidae), a nematode species used in comparative biology for C. elegans.

Ren-E Huang; Xiaoliang Ren; Yifei Qiu; Zhongying Zhao

We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the ‘undescribed’ anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically ‘difficult’ group of animals.


PLOS ONE | 2012

A Method for Rapid and Simultaneous Mapping of Genetic Loci and Introgression Sizes in Nematode Species

Cheung Yan; Yu Bi; Da Yin; Zhongying Zhao

Caenorhabditis briggsae is emerging as an attractive model organism not only in studying comparative biology against C. elegans, but also in developing novel experimentation avenues. In particular, recent identification of a new Caenorhabditis species, C. sp.9 with which it can mate and produce viable progeny provides an opportunity for studying the genetics of hybrid incompatibilities (HI) between the two. Mapping of a specific HI locus demands repeated backcrossing to get hold of the specific genomic region underlying an observed phenotype. To facilitate mapping of HI loci between C. briggsae and C. sp.9, an efficient mapping method and a genetic map ideally consisting of dominant markers are required for systematic introgression of genomic fragments between the two species. We developed a fast and cost-effective method for high throughput mapping of dominant loci with resolution up to 1 million bps in C. briggsae. The method takes advantage of the introgression between C. briggsae and C. sp.9 followed by PCR genotyping using C. briggsae specific primers. Importantly, the mapping results can not only serve as an effective way for estimating the chromosomal position of a genetic locus in C. briggsae, but also provides size information for the introgression fragment in an otherwise C. sp.9 background. In addition, it also helps generate introgression line as a side-product that is invaluable for the subsequent mapping of HI loci. The method will greatly facilitate the construction of a genetic map consisting of dominant markers and pave the way for systematic isolation of HI loci between C. briggsae and C. sp.9 which has so far not been attempted between nematode species. The method is designed for mapping of a dominant allele, but can be easily adapted for mapping of any other type of alleles in any other species if introgression between a sister species pair is feasible.


Molecular Systems Biology | 2015

Systems‐level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry

Vincy Wing Sze Ho; Ming-Kin Wong; Xiaomeng An; Daogang Guan; Jiaofang Shao; Hon Chun Kaoru Ng; Xiaoliang Ren; Kan He; Jinyue Liao; Yingjin Ang; Long Chen; Xiaotai Huang; Bin Yan; Yiji Xia; Leanne Lai Hang Chan; King Lau Chow; Hong Yan; Zhongying Zhao

Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems‐level genetic architecture coordinating division timing, we performed a high‐content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild‐type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time‐lapse imaging followed by computer‐aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.


Journal of Biological Chemistry | 2013

Collaborative Regulation of Development but Independent Control of Metabolism by Two Epidermis-specific Transcription Factors in Caenorhabditis elegans

Jiaofang Shao; Kan He; Hao Wang; Wing Sze Ho; Xiaoliang Ren; Xiaomeng An; Ming Kin Wong; Bin Yan; Dongying Xie; John A. Stamatoyannopoulos; Zhongying Zhao

Background: NHR-25 and ELT-3 are required for development but not for initial specification of epidermis in C. elegans. Results: Genome-wide in vivo targets of NHR-25 are identified. Conclusion: NHR-25 and ELT-3 collaboratively regulate development but differentially control metabolism of epidermis. Significance: The results provide insight into how tissue-specific transcription factors enforce cell fate specification initiated by its master regulator. Cell fate specification is typically initiated by a master regulator, which is relayed by tissue-specific regulatory proteins (usually transcription factors) for further enforcement of cell identities, but how the factors are coordinated among each other to “finish up” the specification remains poorly understood. Caenorhabditis elegans epidermis specification is initiated by a master regulator, ELT-1, that activates its targets, NHR-25 and ELT-3, two epidermis-specific transcription factors that are important for development but not for initial specification of epidermis, thus providing a unique paradigm for illustrating how the tissue-specific regulatory proteins work together to enforce cell fate specification. Here we addressed the question through contrasting genome-wide in vivo binding targets between NHR-25 and ELT-3. We demonstrate that the two factors bind discrete but conserved DNA motifs, most of which remain in proximity, suggesting formation of a complex between the two. In agreement with this, gene ontology analysis of putative target genes suggested differential regulation of metabolism but coordinated control of epidermal development between the two factors, which is supported by quantitative analysis of expression of their specific or common targets in the presence or absence of either protein. Functional validation of a subset of the target genes showed both activating and inhibitory roles of NHR-25 and ELT-3 in regulating their targets. We further demonstrated differential control of specification of AB and C lineage-derived epidermis. The results allow us to assemble a comprehensive gene network underlying C. elegans epidermis development that is likely to be widely used across species and provides insights into how tissue-specific transcription factors coordinate with one another to enforce cell fate specification initiated by its master regulator.


Nucleic Acids Research | 2017

PlaMoM: a comprehensive database compiles plant mobile macromolecules.

Daogang Guan; Bin Yan; Christoph J. Thieme; Jingmin Hua; Hailong Zhu; Kenneth R. Boheler; Zhongying Zhao; Friedrich Kragler; Yiji Xia; Shoudong Zhang

In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/.


Genome Research | 2016

Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression.

Runsheng Li; Xiaoliang Ren; Yu Bi; Vincy Wing Sze Ho; Chia-Ling Hsieh; Amanda Young; Zhihong Zhang; Tingting Lin; Yanmei Zhao; Long Miao; Peter Sarkies; Zhongying Zhao

Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.

Collaboration


Dive into the Zhongying Zhao's collaboration.

Top Co-Authors

Avatar

Xiaoliang Ren

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Hong Yan

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jiaofang Shao

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Runsheng Li

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Vincy Wing Sze Ho

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Ming-Kin Wong

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Yu Bi

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Daogang Guan

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Xiaomeng An

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Xiaotai Huang

City University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge