Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongyu Zhu is active.

Publication


Featured researches published by Zhongyu Zhu.


Biochemical and Biophysical Research Communications | 2009

Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens

Xiaodong Xiao; Weizao Chen; Yang Feng; Zhongyu Zhu; Ponraj Prabakaran; Yanping Wang; Mei-Yun Zhang; Nancy S. Longo; Dimiter S. Dimitrov

Abstract Several human monoclonal antibodies (hmAbs) including b12, 2G12, and 2F5 exhibit relatively potent and broad HIV-1-neutralizing activity. However, their elicitation in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. We have hypothesized that HIV-1 has evolved a strategy to reduce or eliminate the immunogenicity of the highly conserved epitopes of such antibodies by using “holes” (absence or very weak binding to these epitopes of germline antibodies that is not sufficient to initiate and/or maintain an efficient immune response) in the human germline B cell receptor (BCR) repertoire. To begin to test this hypothesis we have designed germline-like antibodies corresponding most closely to b12, 2G12, and 2F5 as well as to X5, m44, and m46 which are cross-reactive but with relatively modest neutralizing activity as natively occurring antibodies due to size and/or other effects. The germline-like X5, m44, and m46 bound with relatively high affinity to all tested Envs. In contrast, germline-like b12, 2G12, and 2F5 lacked measurable binding to Envs in an ELISA assay although the corresponding mature antibodies did. These results provide initial evidence that Env structures containing conserved vulnerable epitopes may not initiate humoral responses by binding to germline antibodies. Even if such responses are initiated by very weak binding undetectable in our assay it is likely that they will be outcompeted by responses to structures containing the epitopes of X5, m44, m46, and other antibodies that bind germline BCRs with much higher affinity/avidity. This hypothesis, if further supported by data, could contribute to our understanding of how HIV-1 evades immune responses and offer new concepts for design of effective vaccine immunogens.


PLOS Pathogens | 2009

A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection.

Katharine N. Bossart; Zhongyu Zhu; Deborah Middleton; Jessica Klippel; Gary Crameri; John Bingham; Jennifer A. McEachern; Diane Green; Timothy J. Hancock; Yee-Peng Chan; Andrew C. Hickey; Dimiter S. Dimitrov; Lin-Fa Wang; Christopher C. Broder

Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID50 within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.


Journal of Virology | 2006

Potent Neutralization of Hendra and Nipah Viruses by Human Monoclonal Antibodies

Zhongyu Zhu; Antony S. Dimitrov; Katharine N. Bossart; Gary Crameri; Kimberly A. Bishop; Vidita Choudhry; Bruce A. Mungall; Yan-Ru Feng; Anil Choudhary; Mei-Yun Zhang; Yang Feng; Lin-Fa Wang; Xiaodong Xiao; Bryan T. Eaton; Christopher C. Broder; Dimiter S. Dimitrov

ABSTRACT Hendra virus (HeV) and Nipah virus (NiV) are closely related emerging viruses comprising the Henipavirus genus of the Paramyxovirinae. Each has a broad species tropism and can cause disease with high mortality in both animal and human hosts. These viruses infect cells by a pH-independent membrane fusion event mediated by their attachment (G) and fusion (F) envelope glycoproteins (Envs). Seven Fabs, m101 to -7, were selected for their significant binding to a soluble form of Hendra G (sG) which was used as the antigen for panning of a large naïve human antibody library. The selected Fabs inhibited, to various degrees, cell fusion mediated by the HeV or NiV Envs and virus infection. The conversion of the most potent neutralizer of infectious HeV, Fab m101, to immunoglobulin G1 (IgG1) significantly increased its cell fusion inhibitory activity: the 50% inhibitory concentration was decreased more than 10-fold to approximately 1 μg/ml. The IgG1 m101 was also exceptionally potent in neutralizing infectious HeV; complete (100%) neutralization was achieved with 12.5 μg/ml, and 98% neutralization required only 1.6 μg/ml. The inhibition of fusion and infection correlated with binding of the Fabs to full-length G as measured by immunoprecipitation and less with binding to sG as measured by enzyme-linked immunosorbent assay and Biacore. m101 and m102 competed with the ephrin-B2, which we recently identified as a functional receptor for both HeV and NiV, indicating a possible mechanism of neutralization by these antibodies. The m101, m102, and m103 antibodies competed with each other, suggesting that they bind to overlapping epitopes which are distinct from the epitopes of m106 and m107. In an initial attempt to localize the epitopes of m101 and m102, we measured their binding to a panel of 11 G alanine-scanning mutants and identified two mutants, P185A and Q191 K192A, which significantly decreased binding to m101 and one, G183, which decreased binding of m102 to G. These results suggest that m101 to -7 are specific for HeV or NiV or both and exhibit various neutralizing activities; they are the first human monoclonal antibodies identified against these viruses and could be used for treatment, prophylaxis, and diagnosis and as research reagents and could aid in the development of vaccines.


Molecular Cancer Therapeutics | 2006

Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function

Yang Feng; Zhongyu Zhu; Xiaodong Xiao; Vidita Choudhry; J. Carl Barrett; Dimiter S. Dimitrov

The insulin-like growth factor (IGF) system plays an important role in a variety of physiologic processes and in diseases such as cancer. Although the role of the IGF system in cancer has been recognized many years ago, components of the system have only recently been targeted and shown to affect cell transformation, proliferation, survival, motility, and migration in tissue cultures and in mouse models of cancer. We have been hypothesizing that targeting IGF-II in addition to blocking its interaction with the IGF receptor type I (IGF-IR) would also allow to block that portion of the signal transduction through the insulin receptor that is due to its interaction with IGF-II. Lowering its level may also not induce up-regulation of its production as for IGF-I. Finally, targeting a diffusable ligand as IGF-II may not require penetration of the antibody inside tumors but could shift the equilibrium to IGF-II complexed with antibody so the ligand concentration would decrease in the tumor environment without the need for the antibody to penetrate the tumor. Here, we describe the identification and characterization of three novel anti-IGF-II fully human monoclonal antibodies. They bound with high (subnanomolar) affinity to IGF-II, did not cross-react with IGF-I and insulin, and potently inhibited signal transduction mediated by the IGF-IR interaction with IGF-II. The most potent neutralizer, IgG1 m610, inhibited phosphorylation of the IGF-IR and the insulin receptor, as well as phosphorylation of the downstream kinases Akt and mitogen-activated protein kinase with an IC50 of the order of 1 nmol/L at IGF-II concentration of 10 nmol/L. It also inhibited growth of the prostate cancer cell line DU145 and migration of the breast cancer line cells MCF-7. These results indicate an immunotherapeutic potential of IgG1 m610 likely in combination with other antibodies and anticancer drugs but only further experiments in mouse models of cancer and human clinical trials could evaluate this possibility. [Mol Cancer Ther 2006;5(1):114–20]


Science Translational Medicine | 2011

A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus Challenge

Katharine N. Bossart; Thomas W. Geisbert; Heinz Feldmann; Zhongyu Zhu; Friederike Feldmann; Joan B. Geisbert; Lianying Yan; Yan Ru Feng; Doug Brining; Dana P. Scott; Yanping Wang; Antony S. Dimitrov; Julie Callison; Yee Peng Chan; Andrew C. Hickey; Dimiter S. Dimitrov; Christopher C. Broder; Barry Rockx

A neutralizing human monoclonal antibody can fully protect nonhuman primates from disease after a lethal Hendra virus challenge. Outfoxing an Emerging Infectious Disease A bat loses its home; a farm animal can’t breathe; a deadly pandemic infection is born. Beautiful and courageous scientists rush frantically to find a vaccine to stem the tide of the infection. Of such heady material, blockbusters like the current thriller Contagion are made. Yet parts of this scenario are rooted in reality. Hendra viruses naturally infect pteropid fruit bats (flying foxes) but cause lethal respiratory disease in horses, which may become infected after exposure to bat urine or birthing fluids. This infection can spread to humans in contact with the horses, leading to respiratory failure and encephalitis. Indeed, since their discovery in Australia in 1994, Hendra viruses have been the star of an increasing number of spillover events, with at least 17 registered in 2011—more than all the previous years combined. Yet, unlike in the movies, Bossart et al. are ahead of the curve: They have developed a human therapeutic monoclonal antibody that can protect African green monkeys from disease. When treated up to 3 days after infection, the monkeys began to recover by day 16, and all treated monkeys survived the infection. In contrast, control monkeys succumbed to the disease by day 8 after infection. Although the authors’ therapeutic human antibody must undergo further dose and safety studies in both their animal model and humans, these studies provide a therapeutic option to treat emerging Hendra virus infections in people. Hendra virus (HeV) is a recently emerged zoonotic paramyxovirus that can cause a severe and often fatal disease in horses and humans. HeV is categorized as a biosafety level 4 agent, which has made the development of animal models and testing of potential therapeutics and vaccines challenging. Infection of African green monkeys (AGMs) with HeV was recently demonstrated, and disease mirrored fatal HeV infection in humans, manifesting as a multisystemic vasculitis with widespread virus replication in vascular tissues and severe pathologic manifestations in the lung, spleen, and brain. Here, we demonstrate that m102.4, a potent HeV-neutralizing human monoclonal antibody (hmAb), can protect AGMs from disease after infection with HeV. Fourteen AGMs were challenged intratracheally with a lethal dose of HeV, and 12 subjects were infused twice with a 100-mg dose of m102.4 beginning at either 10, 24, or 72 hours after infection and again about 48 hours later. The presence of viral RNA, infectious virus, and HeV-specific immune responses demonstrated that all subjects were infected after challenge. All 12 AGMs that received m102.4 survived infection, whereas the untreated control subjects succumbed to disease on day 8 after infection. Animals in the 72-hour treatment group exhibited neurological signs of disease, but all animals started to recover by day 16 after infection. These results represent successful postexposure in vivo efficacy by an investigational drug against HeV and highlight the potential impact a hmAb can have on human disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies

Zhongyu Zhu; Samitabh Chakraborti; Yuxian He; Anjeanette Roberts; Timothy Sheahan; Xiaodong Xiao; Lisa E. Hensley; Ponraj Prabakaran; Barry Rockx; Igor A. Sidorov; Davide Corti; Leatrice Vogel; Yang Feng; Jae-Ouk Kim; Lin-Fa Wang; Ralph S. Baric; Antonio Lanzavecchia; Kristopher M. Curtis; Gary J. Nabel; Kanta Subbarao; Shibo Jiang; Dimiter S. Dimitrov

The severe acute respiratory syndrome coronavirus (SARS-CoV) caused a worldwide epidemic in late 2002/early 2003 and a second outbreak in the winter of 2003/2004 by an independent animal-to-human transmission. The GD03 strain, which was isolated from an index patient of the second outbreak, was reported to resist neutralization by the human monoclonal antibodies (hmAbs) 80R and S3.1, which can potently neutralize isolates from the first outbreak. Here we report that two hmAbs, m396 and S230.15, potently neutralized GD03 and representative isolates from the first SARS outbreak (Urbani, Tor2) and from palm civets (SZ3, SZ16). These antibodies also protected mice challenged with the Urbani or recombinant viruses bearing the GD03 and SZ16 spike (S) glycoproteins. Both antibodies competed with the SARS-CoV receptor, ACE2, for binding to the receptor-binding domain (RBD), suggesting a mechanism of neutralization that involves interference with the SARS-CoV–ACE2 interaction. Two putative hot-spot residues in the RBD (Ile-489 and Tyr-491) were identified within the SARS-CoV spike that likely contribute to most of the m396-binding energy. Residues Ile-489 and Tyr-491 are highly conserved within the SARS-CoV spike, indicating a possible mechanism of the m396 cross-reactivity. Sequence analysis and mutagenesis data show that m396 might neutralize all zoonotic and epidemic SARS-CoV isolates with known sequences, except strains derived from bats. These antibodies exhibit cross-reactivity against isolates from the two SARS outbreaks and palm civets and could have potential applications for diagnosis, prophylaxis, and treatment of SARS-CoV infections.


The Journal of Infectious Diseases | 2008

Exceptionally Potent Cross-Reactive Neutralization of Nipah and Hendra Viruses by a Human Monoclonal Antibody

Zhongyu Zhu; Katharine N. Bossart; Kimberly A. Bishop; Gary Crameri; Antony S. Dimitrov; Jennifer A. McEachern; Yang Feng; Deborah Middleton; Lin-Fa Wang; Christopher C. Broder; Dimiter S. Dimitrov

Abstract We have previously identified neutralizing human monoclonal antibodies against Nipah virus (NiV) and Hendra virus (HeV) by panning a large nonimmune antibody library against a soluble form of the HeV attachment-envelope glycoprotein G (sGHeV). One of these antibodies, m102, which exhibited the highest level of cross-reactive neutralization of both NiV and HeV G, was affinity maturated by light-chain shuffling combined with random mutagenesis of its heavy-chain variable domain and panning against sGHeV. One of the selected antibody Fab clones, m102.4, had affinity of binding to sGHeV that was equal to or higher than that of the other Fabs; it was converted to IgG1 and tested against infectious NiV and HeV. It exhibited exceptionally potent and cross-reactive inhibitory activity with 50% inhibitory concentrations below 0.04 and 0.6 μg/mL, respectively. The virus-neutralizing activity correlated with the binding affinity of the antibody to sGHeV and sGNiV. m102.4 bound a soluble form of NiV G (sGNiV) better than it bound sGHeV, and it neutralized NiV better than HeV, despite being originally selected against sGHeV. These results suggest that m102.4 has potential as a therapeutic agent for the treatment of diseases caused by henipaviruses. It could be also used for prophylaxis and diagnosis, and as a research reagent


Proceedings of the National Academy of Sciences of the United States of America | 2008

Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers

Weizao Chen; Zhongyu Zhu; Yang Feng; Dimiter S. Dimitrov

The antibody access to some conserved structures on the HIV-1 envelope glycoprotein (Env) is sterically restricted. We have hypothesized that the smallest independently folded antibody fragments (domains) could exhibit exceptionally potent and broadly cross-reactive neutralizing activity by targeting hidden conserved epitopes that are not accessible by larger antibodies. To test this hypothesis, we constructed a large (size 2.5 × 1010), highly diversified library of human antibody variable domains (domain antibodies) and used it for selection of binders to conserved Env structures by panning sequentially against Envs from different isolates. The highest affinity binder, m36, neutralized all tested HIV-1 isolates from clades A– D with an activity on average higher than that of C34, a peptide similar to the fusion inhibitor T20, which is in clinical use, and that of m9, which exhibits a neutralizing activity superior to known potent cross-reactive antibodies. Large-size fusion proteins of m36 exhibited diminished neutralizing activity but preincubation of virions with soluble CD4 restored it, suggesting that m36 epitope is sterically restricted and induced by CD4 (CD4i). M36 bound to gp120-CD4 complexes better than to gp120 alone and competed with CD4i antibodies. M36 is the only reported representative of a promising class of potent, broadly cross-reactive HIV-1 inhibitors based on human domain antibodies. It has potential for prevention and therapy and as an agent for exploration of the closely guarded conserved Env structures with implications for design of small molecule inhibitors and elucidation of mechanisms of virus entry and evasion of immune responses.


Journal of Biological Chemistry | 2006

Structure of Severe Acute Respiratory Syndrome Coronavirus Receptor-binding Domain Complexed with Neutralizing Antibody

Ponraj Prabakaran; Jianhua Gan; Yang Feng; Zhongyu Zhu; Vidita Choudhry; Xiaodong Xiao; Xinhua Ji; Dimiter S. Dimitrov

The severe acute respiratory syndrome coronavirus (SARS-CoV, or SCV), which caused a world-wide epidemic in 2002 and 2003, binds to a receptor, angiotensin-converting enzyme 2 (ACE2), through the receptor-binding domain (RBD) of its envelope (spike, S) glycoprotein. The RBD is very immunogenic; it is a major SCV neutralization determinant and can elicit potent neutralizing antibodies capable of out-competing ACE2. However, the structural basis of RBD immunogenicity, RBD-mediated neutralization, and the role of RBD in entry steps following its binding to ACE2 have not been elucidated. By mimicking immune responses with the use of RBD as an antigen to screen a large human antibody library derived from healthy volunteers, we identified a novel potent cross-reactive SCV-neutralizing monoclonal antibody, m396, which competes with ACE2 for binding to RBD, and determined the crystal structure of the RBD-antibody complex at 2.3-Å resolution. The antibody-bound RBD structure is completely defined, revealing two previously unresolved segments (residues 376–381 and 503–512) and a new disulfide bond (between residues 378 and 511). Interestingly, the overall structure of the m396-bound RBD is not significantly different from that of the ACE2-bound RBD. The antibody epitope is dominated by a 10-residue-long protruding β6–β7 loop with two putative ACE2-binding hotspot residues (Ile-489 and Tyr-491). These results provide a structural rationale for the function of a major determinant of SCV immunogenicity and neutralization, the development of SCV therapeutics based on the antibody paratope and epitope, and a retrovaccinology approach for the design of anti-SCV vaccines. The available structural information indicates that the SCV entry may not be mediated by ACE2-induced conformational changes in the RBD but may involve other conformational changes or/and yet to be identified coreceptors.


Journal of Virology | 2011

Cross-Reactive HIV-1-Neutralizing Human Monoclonal Antibodies Identified from a Patient with 2F5-Like Antibodies

Zhongyu Zhu; Haiyan Rebekah Qin; Weizao Chen; Qi Zhao; Xiaoying Shen; Robert J. Schutte; Yanping Wang; Gilad Ofek; Emily Streaker; Ponraj Prabakaran; Genevieve G. Fouda; Hua-Xin Liao; John Owens; Mark K. Louder; Yongping Yang; Kristina-Ana Klaric; M. Anthony Moody; John R. Mascola; Jamie K. Scott; Peter D. Kwong; David C. Montefiori; Barton F. Haynes; Georgia D. Tomaras; Dimiter S. Dimitrov

ABSTRACT The genes encoding broadly HIV-1-neutralizing human monoclonal antibodies (MAbs) are highly divergent from their germ line counterparts. We have hypothesized that such high levels of somatic hypermutation could pose a challenge for elicitation of the broadly neutralizing (bn) Abs and that identification of less somatically mutated bn Abs may help in the design of effective vaccine immunogens. In a quest for such bn Abs, phage- and yeast-displayed antibody libraries, constructed using peripheral blood mononuclear cells (PBMCs) from a patient with bn serum containing Abs targeting the epitope of the bn MAb 2F5, were panned against peptides containing the 2F5 epitope and against the HIV-1 gp140JR-FL. Two MAbs (m66 and m66.6) were identified; the more mutated variant (m66.6) exhibited higher HIV-1-neutralizing activity than m66, although it was weaker than 2F5 in a TZM-bl cell assay. Binding of both MAbs to gp41 alanine substitution mutant peptides required the DKW664–666 core of the 2F5 epitope and two additional upstream residues (L660,663). The MAbs have long (21-residue) heavy-chain third complementarity-determining regions (CDR-H3s), and m66.6 (but not m66) exhibited polyspecific reactivity to self- and non-self-antigens. Both m66 and m66.6 are significantly less divergent from their germ line Ab counterparts than 2F5—they have a total of 11 and 18 amino acid changes, respectively, from the closest VH and Vκ germ line gene products compared to 25 for 2F5. These new MAbs could help explore the complex maturation pathways involved in broad neutralization and its relationship with auto- and polyreactivity and may aid design of vaccine immunogens and development of therapeutics against HIV-1 infection.

Collaboration


Dive into the Zhongyu Zhu's collaboration.

Top Co-Authors

Avatar

Dimiter S. Dimitrov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yang Feng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Weizao Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Saurabh Saha

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ponraj Prabakaran

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanping Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Broder

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Enrique Zudaire

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge