Zhou Yiyong
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhou Yiyong.
Water Research | 2002
Zhou Yiyong; Li Jianqiu; Zhang Min
Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role, in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and Vmax of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The Vmax values in sediment increased during the summer, in conjunction with lower Km values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher Vmax in sediments plus lower Km values in interstitial water, in summer. In summary, a focus on phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes.
Water Research | 2000
Zhou Yiyong; Li Jianqiu; Fu Yongqing
The impacts of submerged macrophytes on kinetics of alkaline phosphatase were studied in two 680 m(2) enclosures in a shallow Chinese freshwater lake (Donghu Lake) from April to October 1996, and two experimental pools (120 m(2)) built inland in 1998. The submerged macrophytes were Vallisneria sp, Potamogeton crispus. In the presence of macrophytes, the concentration of orthophosphate was significantly lower, coupled with the decreasing function of organic P hydrolysis, in terms of lower V-max and higher K-m values of aIkaline phosphatase in water, filtered and unfiltered (0.45 mu m); in the interstitial water, the V-max values of the enzyme in sediments were significantly lower, exhibited by a spatial and vertical profile. The results implied the key role of submerged macrophytes was the retention of P nutrients
Aquaculture | 2001
Zhou Yiyong; Li Jianqiu; Fu Yongqing; Zhang Min
Variations in kinetics of alkaline phosphatase occurring in different sites of sediment associated with cage culture of Oreochromis niloticus in a shallow Chinese freshwater lake (Lake Donghu) were described. In addition, the kinetic parameters of each 2.5-cm stratum in the sediment from the surface down to 37.5 cm were analyzed. Horizontally, the V-max values of alkaline phosphatase in surface sediments increased markedly at sites immediately under and adjacent to the cage that would be subjected to the deposition of fish feces. Peak V-max values in the top 5 cm of the sediment under the cage were also observed relative to their deeper control. After a treatment where the fish feces were added over 12 days, the sediment in deeper layer exhibited a significantly higher V-max value, thereby corroborating the relationship between V-max values of alkaline phosphatase and fish feces in sediments. The fish feces exhibited a remarkable alkaline phosphatase activity (APA). Thus, it is indeed a source of the enzyme. Effects of the fish feces were dose- and time-dependent. The V-max values in sediments were always stimulated, but the K-m values showed much more variability
Science in China Series D: Earth Sciences | 2006
Song Chunlei; Cao Xiuyun; Li Jianqiu; Li Qingman; Chen Guoyuan; Zhou Yiyong
Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.
Hydrobiologia | 1996
Zhou Yiyong
Filtrable phosphorus compounds in a shallow Chinese freshwater lake (Donghu Lake) were fractionated by Sephadex G-25 gel-filtration chromatography. Some portions of those compounds released soluble reactive phosphorus upon irradiation with low dose ultraviolet light. Catalase and a hydroxyl radical scavenger (mannitol) markedly prevented photosensitive phosphorus release. The observed effects may be explained by the action of oxidizing reagents such as hydroxyl radicals, produced in photochemical reactions between UV irradiation and humic substances in the water. There was a strong seasonality in UV-sensitive P (UVSP) release. Michaels constants (Km) of total alkaline phosphatase in the lake water showed a direct positive relation to UVSP Plot of Km against the UVSP/phosphomonoester ratio reveals a strong relationship between the two variables. These results suggest that in some situations UVSP may be a competitive inhibitor of alkaline phosphatase activity in the lake. The competitive inhibition of fractionated UVSP on alkaline phosphatase reagent (Sigma) apparently supports this hypothesis.
Water Air and Soil Pollution | 2004
Zhou Yiyong; Li Jianqiu; Song Chunlei; Cao Xiuyun
Total alkaline phosphatase activity (APA) and soluble reactive phosphorus (SRP) concentrations were measured in municipal wastewater, and a shallow Chinese freshwater lake receiving it. Activities of Dissolved alkaline phosphatase ( ADAP) in overlying and interstitial water were also analyzed monthly at three sites for several years. The lake was enriched with SRP and alkaline phosphatase by discharge of the wastewater, indicating that the inclusion of APA for estimating water pollution was reasonable. Annual data showed that APA in coarser fraction was significantly higher at the site receiving more wastewaters, both in surface and overlying water, suggesting that resuspension of enzyme most likely occurred in the basin heavily discharged. ADAP was an order of magnitude higher in the wastewater than those in lake waters, and was generally higher in interstitial water, a feature more striking at the site receiving more discharges. Besides, it was irrespectively inhibited by Na2WO4, L-cysteine and EDTA-Na, but stimulated by Cu2+, Zn2+, CTAB and Triton X-100 in interstitial, overlying and surface waters. This similarity of responding patterns to the stressors indicated an analogy between dissolved alkaline phosphatase in water column and that in interstitial water, supporting the hypothesis that the polluted sediments act as source of dissolved alkaline phosphatase in eutrophic lakes.Total alkaline phosphatase activity (APA) and soluble reactive phosphorus (SRP) concentrations were measured in municipal wastewater, and a shallow Chinese freshwater lake receiving it. Activities of Dissolved alkaline phosphatase (ADAP) in overlying and interstitial water were also analyzed monthly at three sites for several years. The lake was enriched with SRP and alkaline phosphatase by discharge of the wastewater, indicating that the inclusion of APA for estimating water pollution was reasonable. Annual data showed that APA in coarser fraction was significantly higher at the site receiving more wastewaters, both in surface and overlying water, suggesting that resuspension of enzyme most likely occurred in the basin heavily discharged. ADAP was an order of magnitude higher in the wastewater than those in lake waters, and was generally higher in interstitial water, a feature more striking at the site receiving more discharges. Besides, it was irrespectively inhibited by Na2WO4, L-cysteine and EDTA-Na, but stimulated by Cu2+, Zn2+, CTAB and Triton X-100 in interstitial, overlying and surface waters. This similarity of responding patterns to the stressors indicated an analogy between dissolved alkaline phosphatase in water column and that in interstitial water, supporting the hypothesis that the polluted sediments act as source of dissolved alkaline phosphatase in eutrophic lakes.
Journal of Lake Sciences | 2009
Huang Daizhong; Xiao Wenjuan; Liu Yunbing; Liu Jingyuan; Zhou Yiyong
The samples were taken from the shallow urban lakes(Lake Yuehu) in Wuhan city to optimize the determination of dehydrogenase activity (DHA) in sediment, which gave the following suitable conditions: the sediment sterilized by formaldehyde was used as the control, the concentration of electron acceptor (2,3,5-triphenyl-2H-tetrazolium chloride) was 0.4%, the sediment amount used was 0.5g, pH value was 7.5 and the reaction time was 3h. Under these conditions, the DHA assayed was 3-5 times higher, and its positive relation to the content of organic matter in sediment was more significant, compared to those determined by the unmodified method. The data based on the 23 sites from 3 basins of Lake Donghu demonstrated the feasibility of the method. In the same time, the ecological significance of DHA was further shown in terms of the measurements of microbial activities and organic matter status in lake sediment.
Journal of Lake Sciences | 2008
Weijie Mi; Mi WeiJie; Yiyong Zhou; Duanwei Zhu; Zhou Yiyong; Zhu Duanwei; Yang WangGan; Wanggan Yang
According to compare the content of phosphorus (P) fraction, P sorption ability of water-sediment in ponds polluted by sewage from a hoggery and a rearing-pond, the influences of sewage from hoggery and fishery on P behavior in water-sediment system were studied. The results indicated that sewage from hoggery and fishery could significantly increase P contents in water, and sewage from hoggery increased more significantly dissolved P in water than fishery. Sewage from hoggery had no significant influence on sediment P concentration and P sorption properties, whereas fishery could significantly increase total inorganic P, Fe bound P (Fe-P) in sediment and maximum P sorption capacity and decrease P absorptive capability of sediment. The P sorption properties of sediment had some relationship with organic matter content in sediment.
Hydrobiologia | 2001
Zhou Yiyong; Li Jianqiu; Zhang Min
Archive | 2007
Chen Fang; Xia Zhuo-Ying; Song Chunlei; Li Jianqiu; Zhou Yiyong