Zhouhua Jiang
Northeastern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhouhua Jiang.
Journal of The Electrochemical Society | 2008
Yao Fu; Xinqiang Wu; En-Hou Han; Wei Ke; Ke Yang; Zhouhua Jiang
The effects of cold work on the pitting corrosion resistance of a nickel-free high-nitrogen stainless steel in chloride solution have been investigated by electrochemical tests, surface chemical analysis, immersion tests, and microscopic observations. Potentiodynamic polarization revealed that pitting resistance was degraded by cold work as convinced by the decreased critical pitting potential. This could be due to a less compact and protective anodic passive film based on the results of electrochemical impedance spectroscopy, Mott-Schottky measurement, and X-ray photoelectron spectroscopy analysis. The growth of such an imperfect passive film could be attributed to a high density of deformation bands and other defects introduced by cold work. Scanning electron microscopy observation of the pitted specimens after polarization tests showed no obvious change in size and density of corrosion pits with increasing cold work level, whereas immersion tests showed varied pit density with cold work although the average size of pits did not increase linearly as a function of cold work level. The effects of cold work on the characteristics of passive films are discussed
Journal of Materials Engineering and Performance | 2009
Xinqiang Wu; Yao Fu; Junbo Huang; En-Hou Han; Wei Ke; Ke Yang; Zhouhua Jiang
Pitting corrosion behavior of three kinds of nickel-free and manganese-alloyed high-nitrogen (N) stainless steels (HNSSs) was investigated using electrochemical and immersion testing methods. Type 316L stainless steel (316L SS) was also included for comparison purpose. Both solution-annealed and sensitization-treated steels were examined. The solution-annealed HNSSs showed much better resistance to pitting corrosion than the 316L SS in both neutral and acidic sodium chloride solutions. The addition of molybdenum (Mo) had no further improvement on the pitting corrosion resistance of the solution-annealed HNSSs. The sensitization treatment resulted in significant degradation of the pitting corrosion resistance of the HNSSs, but not for the 316L SS. Typical large size of corrosion pits was observed on the surface of solution-annealed 316L SS, while small and dispersed corrosion pits on the surfaces of solution-annealed HNSSs. The sensitization-treated HNSSs suffered very severe pitting corrosion, accompanying the intergranular attack. The addition of Mo significantly improved the resistance of the sensitization-treated HNSSs to pitting corrosion, particularly in acidic solution. The good resistance of the solution-annealed HNSSs to pitting corrosion could be attributed to the passive film contributed by N, Cr, and Mo. The sensitization treatment degraded the passive film by decreasing anti-corrosion elements and Cr-bearing oxides in the passive film.
Materials | 2017
Zhouhua Jiang; Hao Feng; Huabing Li; Hongchun Zhu; Shucai Zhang; Binbin Zhang; Yu Han; Tao Zhang; Dake Xu
The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M2N dispersed more homogeneously than coarse M23C6, and the fractions of M23C6 and M2N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M23C6 was wider and its minimum Cr concentration was lower than M2N. The metastable pits initiated preferentially around coarse M23C6 which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr2O3, Cr3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M23C6 (below 1000 °C), dissolution of M2N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C).
Materials | 2017
Jialong Tian; Wei Wang; M. Babar Shahzad; Wei Yan; Yiyin Shan; Zhouhua Jiang; Ke Yang
A new maraging stainless steel with superior strength–toughness–corrosion synergy has been developed based on an innovative concept of alloy design. The high strength–toughness combination is achieved by forming dispersive nano-sized intermetallic compounds in the soft lath martensitic matrix with a slight amount of residual austenite. The good corrosion resistance is guaranteed by exactly controlling the Co content based on understanding the synergistic effect between Co and Cr. The fine structure characteristics of two dominant strengthening precipitations including Ni3Ti and Mo-rich phases were finely characterized associated with transmission electron microscope (TEM) and atom probe tomography (APT) analyses. The relationship among microstructure, strength and toughness is discussed. The precipitation mechanism of different precipitates in the new maraging stainless steel is revealed based on the APT analysis.
Tribology - Materials, Surfaces & Interfaces | 2007
Y. X. Qiao; Y. G. Zheng; Xinqiang Wu; Wei Ke; Ke Yang; Zhouhua Jiang
Abstract The cavitation erosion (CE) of a high nitrogen stainless steel (HNS) and a low nitrogen CrMnN stainless steel in both distilled water and 3%NaCl solution at 20±1°C was investigated by using a magnetostrictive induced cavitation facility. The evolution of CE with test time was analysed by morphology observation by SEM and roughness measurement after different CE intervals. The possible phase transformation of austenite to martensite due to cavitation was analysed by XRD, and cross-sectional microhardness after cavitation was also measured to evaluate the work hardening ability. The role of corrosion was analysed by polarisation curve. The test results indicated that HNS had a relatively higher CE resistance than CrMnN steel, which was mainly attributed to its higher work hardening ability, thicker wok hardening layer and lower stacking fault energy. Different from that of the HNS, many tiny cracks could be clearly seen in the cross-section of eroded CrMnN steel especially at the ferrite zones. The pure erosion dominated the whole cavitation damage process, and the synergistic effect between corrosion and erosion was relatively small for both steels. The CE behaviour of HNS was relatively more sensitive to the corrosion media than that of CrMnN steel. Therefore, it should be a little bit careful when HNS was used in corrosive media.
Journal of Materials Engineering and Performance | 2018
Yangpeng Zhang; Dongping Zhan; Xiwei Qi; Zhouhua Jiang; Huishu Zhang
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600xa0°C.
Acta Metallurgica Sinica (english Letters) | 2018
Jialong Tian; Wei Wang; M. Babar Shahzad; Wei Yan; Yiyin Shan; Zhouhua Jiang; Ke Yang
Corrosion resistance behavior of Co-containing maraging stainless steels was investigated. Neutral salt spray and polarization test showed that maraging stainless steel with high Co content showed poor corrosion behavior. Microstructure observation proved that segregation of Cr in the matrix deteriorated its corrosion resistance. The surface morphology of the aged maraging stainless steel with high Co content indicated that during passivation process, the newly formed passive film with sinusoidal distribution readily destroyed by the corrosive medium, hence, causing poor corrosion resistance. Moreover, through first-principles calculation it was proved that Co increased Fe–Fe ferromagnetic interaction which facilitated the formation Cr-rich clusters.
Journal of Iron and Steel Research International | 2017
Jialong Tian; Wei Wang; Wei Yan; Zhouhua Jiang; Yiyin Shan; Ke Yang
The segregation of Cu and Ni in a 17-4PH stainless steel piston rod has been confirmed to be responsible for the cracking after heat treatment. Further investigation showed that the segregation zone was composed of three layers, namely the fine grain martensitic layer, the coarse grain martensitic layer and the coarse grain austenitic layer from the matrix to the crack surface. Three button ingots with the same chemical compositions as those three layers have been prepared to evaluate the grain size distribution, microstructure and mechanical properties. The effects of Cu and Ni segregation on the microstructures of those three layers have been explored by thermodynamic calculation. Based on the microstructure and mechanical properties results, an intensive understanding of the cracking in the segregation zone was therefore reached.
Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting | 2013
Xin Geng; Zhouhua Jiang; Huabing Li; Fubin Liu; Xing Li
With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.
Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting | 2013
Yanwu Dong; Zhouhua Jiang; Yulong Cao; Jinxi Fan; Ang Yu; Fubin Liu
Besides controlling homogeneous composition and compact solidification structure, removal of non-metallic inclusions is an important characteristic for electroslag remelting process. Many factors influence the non-metallic inclusions in steel including gas and inclusions original content in consumable electrode, atmosphere, slag amount and its composition, power input, melting rate, filling ratio and so on. Fluoride containing slag, which influences the non-metallic inclusions to a great extent, has been widely used for electroslag remelting process. The present paper focuses on the effect of fluoride containing slag on the inclusions in electroslag ingot based on the interaction of slag-metal interface. In this work, steel grade MC5 and several slags have been employed for investigating the effect of slag on inclusions. These experiments had been carried out in an electrical resistance furnace under argon atmosphere in order to eliminate the effect of ambient oxygen. Some specimens had been taken at different times for analyzing the content, dimensions, and type of non-metallic inclusions. Quantitative metallographic analysis method has been adopted for observing and examining the inclusions. SEM-EDS analysis has been used to investigate the composition of non-metallic inclusions of specimens at different time for investigating the modification behavior of inclusions. All the results obtained will be comparison to the original state inclusions in steel, which will be in favor of choose of slag for electroslag remelting process.