Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhu Guo is active.

Publication


Featured researches published by Zhu Guo.


Virology | 2015

Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins.

Hua Yang; Paul J. Carney; Jessie C. Chang; Zhu Guo; Julie M. Villanueva; James Stevens

A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans.


Journal of Virology | 2014

Structural Stability of Influenza A(H1N1)pdm09 Virus Hemagglutinins

Hua Yang; Jessie C. Chang; Zhu Guo; Paul J. Carney; David A. Shore; Ruben O. Donis; Nancy J. Cox; Julie M. Villanueva; Alexander Klimov; James Stevens

ABSTRACT The noncovalent interactions that mediate trimerization of the influenza hemagglutinin (HA) are important determinants of its biological activities. Recent studies have demonstrated that mutations in the HA trimer interface affect the thermal and pH sensitivities of HA, suggesting a possible impact on vaccine stability (). We used size exclusion chromatography analysis of recombinant HA ectodomain to compare the differences among recombinant trimeric HA proteins from early 2009 pandemic H1N1 viruses, which dissociate to monomers, with those of more recent virus HAs that can be expressed as trimers. We analyzed differences among the HA sequences and identified intermolecular interactions mediated by the residue at position 374 (HA0 numbering) of the HA2 subdomain as critical for HA trimer stability. Crystallographic analyses of HA from the recent H1N1 virus A/Washington/5/2011 highlight the structural basis for this observed phenotype. It remains to be seen whether more recent viruses with this mutation will yield more stable vaccines in the future. IMPORTANCE Hemagglutinins from the early 2009 H1N1 pandemic viruses are unable to maintain a trimeric complex when expressed in a recombinant system. However, HAs from 2010 and 2011 strains are more stable, and our work highlights that the improvement in stability can be attributed to an E374K substitution in the HA2 subunit of the stalk that emerged naturally in the circulating viruses.


Antimicrobial Agents and Chemotherapy | 2013

Cell Culture-Selected Substitutions in Influenza A(H3N2) Neuraminidase Affect Drug Susceptibility Assessment

Daisuke Tamura; Ha T. Nguyen; Katrina Sleeman; Marnie Levine; Vasiliy P. Mishin; Hua Yang; Zhu Guo; Margaret Okomo-Adhiambo; Xiyan Xu; James Stevens; Larisa V. Gubareva

ABSTRACT Assessment of drug susceptibility has become an integral part of influenza virus surveillance. In this study, we describe the drug resistance profile of influenza A(H3N2) virus, A/Mississippi/05/2011, collected from a patient treated with oseltamivir and detected via surveillance. An MDCK cell-grown isolate of this virus exhibited highly reduced inhibition by the neuraminidase (NA) inhibitors (NAIs) oseltamivir (8,005-fold), zanamivir (813-fold), peramivir (116-fold), and laninamivir (257-fold) in the NA inhibition assay. Sequence analysis of its NA gene revealed a known oseltamivir-resistance marker, the glutamic acid-to-valine substitution at position 119 (E119V), and an additional change, threonine to isoleucine at position 148 (T148I). Unlike E119V, T148I was not detected in the clinical sample but acquired during viral propagation in MDCK cells. Using recombinant proteins, T148I by itself was shown to cause only a 6-fold increase in the zanamivir 50% inhibitory concentration (IC50) and had no effect on inhibition by other drugs. The T148I substitution reduced NA activity by 50%, most likely by affecting the positioning of the 150 loop at the NA catalytic site. Using pyrosequencing, changes at T148 were detected in 35 (23%) of 150 MDCK cell-grown A(H3N2) viruses tested, which was lower than the frequency of changes at D151 (85%), an NA residue previously implicated in cell selection. We demonstrate that culturing of the A(H3N2) viruses (n = 11) at a low multiplicity of infection delayed the emergence of the NA variants with changes at position 148 and/or 151, especially when conducted in MDCK-SIAT1 cells. Our findings highlight the current challenges in monitoring susceptibility of influenza A(H3N2) viruses to the NAI class of antiviral drugs.


Antimicrobial Agents and Chemotherapy | 2014

Antiviral Susceptibility of Variant Influenza A(H3N2)v Viruses Isolated in the United States from 2011 to 2013

Katrina Sleeman; Vasiliy P. Mishin; Zhu Guo; Rebecca Garten; Amanda Balish; Alicia M. Fry; Julie M. Villanueva; James Stevens; Larisa V. Gubareva

ABSTRACT Since 2011, outbreaks caused by influenza A(H3N2) variant [A(H3N2)v] viruses have become a public health concern in the United States. The A(H3N2)v viruses share the A(H1N1)pdm09 M gene containing the marker of M2 blocker resistance, S31N, but do not contain any known molecular markers associated with resistance to neuraminidase (NA) inhibitors (NAIs). Using a fluorescent NA inhibition (NI) assay, the susceptibilities of recovered A(H3N2)v viruses (n = 168) to FDA-approved (oseltamivir and zanamivir) and other (peramivir, laninamivir, and A-315675) NAIs were assessed. All A(H3N2)v viruses tested, with the exception of a single virus strain, A/Ohio/88/2012, isolated from an untreated patient, were susceptible to the NAIs tested. The A/Ohio/88/2012 virus contained two rare substitutions, S245N and S247P, in the NA and demonstrated reduced inhibition by oseltamivir (31-fold) and zanamivir (66-fold) in the NI assay. Using recombinant NA (recNA) proteins, S247P was shown to be responsible for the observed altered NAI susceptibility, in addition to an approximately 60% reduction in NA enzymatic activity. The S247P substitution has not been previously reported as a molecular marker of reduced susceptibility to the NAIs. Using cell culture assays, the investigational antiviral drugs nitazoxanide, favipiravir, and fludase were shown to inhibit the replication of A(H3N2)v viruses, including the virus with the S247P substitution in the NA. This report demonstrates the importance of continuous monitoring of susceptibility of zoonotic influenza viruses to available and investigational antiviral drugs.


Journal of Virology | 2016

Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

Hua Yang; Paul J. Carney; Vasiliy P. Mishin; Zhu Guo; Jessie C. Chang; David E. Wentworth; Larisa V. Gubareva; James Stevens

ABSTRACT During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential. IMPORTANCE The H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.


Journal of Virology | 2015

Structural and Functional Analysis of Surface Proteins from an A(H3N8) Influenza Virus Isolated from New England Harbor Seals

Hua Yang; Ha T. Nguyen; Paul J. Carney; Zhu Guo; Jessie C. Chang; Joyce Jones; Charles T. Davis; Julie M. Villanueva; Larisa V. Gubareva; James Stevens

ABSTRACT In late 2011, an A(H3N8) influenza virus infection resulted in the deaths of 162 New England harbor seals. Virus sequence analysis and virus receptor binding studies highlighted potential markers responsible for mammalian adaptation and a mixed receptor binding preference (S. J. Anthony, J. A. St Leger, K. Pugliares, H. S. Ip, J. M. Chan, Z. W. Carpenter, I. Navarrete-Macias, M. Sanchez-Leon, J. T. Saliki, J. Pedersen, W. Karesh, P. Daszak, R. Rabadan, T. Rowles, W. I. Lipkin, MBio 3:e00166-00112, 2012, http://dx.doi.org/10.1128/mBio.00166-12). Here, we present a detailed structural and biochemical analysis of the surface antigens of the virus. Results obtained with recombinant proteins for both the hemagglutinin and neuraminidase indicate a true avian receptor binding preference. Although the detection of this virus in new species highlights an increased potential for cross-species transmission, our results indicate that the A(H3N8) virus currently poses a low risk to humans. IMPORTANCE Cross-species transmission of zoonotic influenza viruses increases public health concerns. Here, we report a molecular and structural study of the major surface proteins from an A(H3N8) influenza virus isolated from New England harbor seals. The results improve our understanding of these viruses as they evolve and provide important information to aid ongoing risk assessment analyses as these zoonotic influenza viruses continue to circulate and adapt to new hosts.


The Journal of Infectious Diseases | 2017

Drug Susceptibility Evaluation of an Influenza A(H7N9) Virus by Analyzing Recombinant Neuraminidase Proteins.

Larisa V. Gubareva; Katrina Sleeman; Zhu Guo; Hua Yang; Erin Hodges; Charles T. Davis; Tatiana Baranovich; James Stevens

BackgroundnNeuraminidase (NA) inhibitors are the recommended antiviral medications for influenza treatment. However, their therapeutic efficacy can be compromised by NA changes that emerge naturally and/or following antiviral treatment. Knowledge of which molecular changes confer drug resistance of influenza A(H7N9) viruses (group 2NA) remains sparse.nnnMethodsnFourteen amino acid substitutions were introduced into the NA of A/Shanghai/2/2013(H7N9). Recombinant N9 (recN9) proteins were expressed in a baculovirus system in insect cells and tested using the Centers for Disease Control and Prevention standardized NA inhibition (NI) assay with oseltamivir, zanamivir, peramivir, and laninamivir. The wild-type N9 crystal structure was determined in complex with oseltamivir, zanamivir, or sialic acid, and structural analysis was performed.nnnResultsnAll substitutions conferred either reduced or highly reduced inhibition by at least 1 NA inhibitor; half of them caused reduced inhibition or highly reduced inhibition by all NA inhibitors. R292K conferred the highest increase in oseltamivir half-maximal inhibitory concentration (IC50), and E119D conferred the highest zanamivir IC50. Unlike N2 (another group 2NA), H274Y conferred highly reduced inhibition by oseltamivir. Additionally, R152K, a naturally occurring variation at the NA catalytic residue of A(H7N9) viruses, conferred reduced inhibition by laninamivir.nnnConclusionsnThe recNA method is a valuable tool for assessing the effect of NA changes on drug susceptibility of emerging influenza viruses.


Virology | 2015

Diverse antigenic site targeting of influenza hemagglutinin in the murine antibody recall response to A(H1N1)pdm09 virus.

Jason R. Wilson; Zhu Guo; Wen-Pin Tzeng; Rebecca Garten; Xu Xiyan; Elisabeth G. Blanchard; Kristy Blanchfield; James Stevens; Jacqueline M. Katz; Ian A. York

Here we define the epitopes on HA that are targeted by a group of 9 recombinant monoclonal antibodies (rmAbs) isolated from memory B cells of mice, immunized by infection with A(H1N1)pdm09 virus followed by a seasonal TIV boost. These rmAbs were all reactive against the HA1 region of HA, but display 7 distinct binding footprints, targeting each of the 4 known antigenic sites. Although the rmAbs were not broadly cross-reactive, a group showed subtype-specific cross-reactivity with the HA of A/South Carolina/1/18. Screening these rmAbs with a panel of human A(H1N1)pdm09 virus isolates indicated that naturally-occurring changes in HA could reduce rmAb binding, HI activity, and/or virus neutralization activity by rmAb, without showing changes in recognition by polyclonal antiserum. In some instances, virus neutralization was lost while both ELISA binding and HI activity were retained, demonstrating a discordance between the two serological assays traditionally used to detect antigenic drift.


Virology | 2014

Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin

Jason R. Wilson; Wen-Pin Tzeng; April Spesock; Nedzad Music; Zhu Guo; Robert Barrington; James Stevens; Ruben O. Donis; Jacqueline M. Katz; Ian A. York

UNLABELLEDnWe infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72-130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help to define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing.nnnIMPORTANCEnProtection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely related viruses. In spite of this limited range of protection, recent findings indicate that individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help to put bounds on the diversity of the anti-hemagglutinin antibody response, as well as characterizing the cross-reactivity, affinity, and molecular nature of the antibody response.


Antimicrobial Agents and Chemotherapy | 2015

Application of a Seven-Target Pyrosequencing Assay To Improve the Detection of Neuraminidase Inhibitor-Resistant Influenza A(H3N2) Viruses

Daisuke Tamura; Margaret Okomo-Adhiambo; Vasiliy P. Mishin; Zhu Guo; Xiyan Xu; Julie M. Villanueva; Alicia M. Fry; James Stevens; Larisa V. Gubareva

ABSTRACT National U.S. influenza antiviral surveillance incorporates data generated by neuraminidase (NA) inhibition (NI) testing of isolates supplemented with NA sequence analysis and pyrosequencing analysis of clinical specimens. A lack of established correlates for clinically relevant resistance to NA inhibitors (NAIs) hinders interpretation of NI assay data. Nonetheless, A(H3N2) viruses are commonly monitored for moderately or highly reduced inhibition in the NI assay and/or for the presence of NA markers E119V, R292K, and N294S. In 2012 to 2013, three drug-resistant A(H3N2) viruses were detected by NI assay among isolates (n = 1,424); all showed highly reduced inhibition by oseltamivir and had E119V. In addition, one R292K variant was detected among clinical samples (n = 1,024) by a 3-target pyrosequencing assay. Overall, the frequency of NAI resistance was low (0.16% [4 of 2,448]). To screen for additional NA markers previously identified in viruses from NAI-treated patients, the pyrosequencing assay was modified to include Q136K, I222V, and deletions encompassing residues 245 to 248 (del245-248) and residues 247 to 250 (del247-250). The 7-target pyrosequencing assay detected NA variants carrying E119V, Q136, and del245-248 in an isolate from an oseltamivir-treated patient. Next, this assay was applied to clinical specimens collected from hospitalized patients and submitted for NI testing but failed cell culture propagation. Of the 27 clinical specimens tested, 4 (15%) contained NA changes: R292K (n = 2), E119V (n = 1), and del247-250 (n = 1). Recombinant NAs with del247-250 or del245-248 conferred highly reduced inhibition by oseltamivir, reduced inhibition by zanamivir, and normal inhibition by peramivir and laninamivir. Our results demonstrated the benefits of the 7-target pyrosequencing assay in conducting A(H3N2) antiviral surveillance and testing for clinical care.

Collaboration


Dive into the Zhu Guo's collaboration.

Top Co-Authors

Avatar

James Stevens

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Hua Yang

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Larisa V. Gubareva

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Julie M. Villanueva

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Jessie C. Chang

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Paul J. Carney

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Vasiliy P. Mishin

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Ian A. York

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Katrina Sleeman

National Center for Immunization and Respiratory Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge