Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhu-Hong Li is active.

Publication


Featured researches published by Zhu-Hong Li.


Mbio | 2015

CRISPR/Cas9-Induced Disruption of Paraflagellar Rod Protein 1 and 2 Genes in Trypanosoma cruzi Reveals Their Role in Flagellar Attachment

Noelia Lander; Zhu-Hong Li; Sayantanee Niyogi; Roberto Docampo

ABSTRACT Trypanosoma cruzi is the etiologic agent of Chagas disease, and current methods for its genetic manipulation have been highly inefficient. We report here the use of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system for disrupting genes in the parasite by three different strategies. The utility of the method was established by silencing genes encoding the GP72 protein, which is required for flagellar attachment, and paraflagellar rod proteins 1 and 2 (PFR1, PFR2), key components of the parasite flagellum. We used either vectors containing single guide RNA (sgRNA) and Cas9, separately or together, or one vector containing sgRNA and Cas9 plus donor DNA for homologous recombination to rapidly generate mutant cell lines in which the PFR1, PFR2, and GP72 genes have been disrupted. We demonstrate that genome editing of these endogenous genes in T. cruzi is successful without detectable toxicity of Cas9. Our results indicate that PFR1, PFR2, and GP72 contribute to flagellar attachment to the cell body and motility of the parasites. Therefore, CRISPR/Cas9 allows efficient gene disruption in an almost genetically intractable parasite and suggest that this method will improve the functional analyses of its genome. IMPORTANCE Trypanosoma cruzi is the agent of Chagas disease, which affects millions of people worldwide. Vaccines to prevent this disease are not available, and drug treatments are not completely effective. The study of the biology of this parasite through genetic approaches will make possible the development of new preventive or treatment options. Previous attempts to use the CRISPR/Cas9 in T. cruzi found a detectable but low frequency of Cas9-facilitated homologous recombination and fluorescent marker swap between exogenous genes, while Cas9 was toxic to the cells. In this report, we describe new approaches that generate complete disruption of an endogenous gene without toxicity to the parasites and establish the relevance of several proteins for flagellar attachment and motility. Trypanosoma cruzi is the agent of Chagas disease, which affects millions of people worldwide. Vaccines to prevent this disease are not available, and drug treatments are not completely effective. The study of the biology of this parasite through genetic approaches will make possible the development of new preventive or treatment options. Previous attempts to use the CRISPR/Cas9 in T. cruzi found a detectable but low frequency of Cas9-facilitated homologous recombination and fluorescent marker swap between exogenous genes, while Cas9 was toxic to the cells. In this report, we describe new approaches that generate complete disruption of an endogenous gene without toxicity to the parasites and establish the relevance of several proteins for flagellar attachment and motility.


Expert Opinion on Therapeutic Targets | 2008

Anti-infectives Targeting the isoprenoid pathway of Toxoplasma gondii

Silvia Nj Moreno; Zhu-Hong Li

Background: Isoprenoids are an extensive group of natural products with diverse structures consisting of various numbers of five carbon isopentenyl diphosphate (IPP) units. Objective: We review here what is known about the isoprenoid pathway in T. gondii. Methods: Recent primary literature is reviewed. Results/conclusion: Genomic evidence points toward the presence of a 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway, similar to the one found in plants, which will produce isopentenyl diphosphate (IPP). The DOXP/MEP pathway has been validated as a target in the related Apicomplexan parasite Plasmodium. The DOXP/MEP pathway in Toxoplasma has not been characterized. Downstream in the pathway, the enzyme farnesyl diphosphate synthase (FPPS) has a central role in forming important intermediates since farnesyl diphosphate (FPP) is a precursor of critical molecules with fundamental biological function such as dolichols, heme a, cholesterol, farnesylated proteins and others. Strong evidence indicates that this enzyme is a valid target for drugs since bisphosphonates, which are specific FPPS inhibitors, inhibited parasite growth in vitro and in vivo. Our hypothesis is that the isoprenoid pathway constitutes a major novel target for the treatment of toxoplasmosis.


Journal of Biological Chemistry | 2011

Hyperosmotic Stress Induces Aquaporin-dependent Cell Shrinkage, Polyphosphate Synthesis, Amino Acid Accumulation, and Global Gene Expression Changes in Trypanosoma cruzi

Zhu-Hong Li; Vanina E. Alvarez; Javier G. De Gaudenzi; Celso Sant'Anna; Alberto C.C. Frasch; Juan José Cazzulo; Roberto Docampo

Background: Trypanosoma cruzi is subjected to hyperosmotic stress during its life cycle. Results: The recovery from hyperosmotic stress involves the function of an aquaporin, amino acid accumulation, polyphosphate synthesis, and global gene regulation. Conclusion: The response to hyperosmotic stress is different from that observed in mammalian cells or yeasts. Significance: Learning the mechanism of osmoregulation is important for finding new drug targets. The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3′UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance.


Journal of Biological Chemistry | 2011

Adaptor Protein-3 (AP-3) Complex Mediates the Biogenesis of Acidocalcisomes and Is Essential for Growth and Virulence of Trypanosoma brucei

Guozhong Huang; Jianmin Fang; Celso Sant'Anna; Zhu-Hong Li; Dianne L. Wellems; Peter Rohloff; Roberto Docampo

Background: Acidocalcisomes are acidic calcium and polyphosphate storage organelles found in diverse organisms. Results: Knockdown of adaptor protein-3 (AP-3) complex subunits in Trypanosoma brucei affects the biogenesis of acidocalcisomes and their growth and virulence. Conclusion: AP-3 is essential for the biogenesis of acidocalcisomes and the growth and virulence of T. brucei. Significance: Learning the biogenesis mechanism of acidocalcisomes is important for understanding their roles. Acidocalcisomes are acidic calcium and polyphosphate storage organelles found in a diverse range of organisms. Here we present evidence that the biogenesis of acidocalcisomes in Trypanosoma brucei is linked to the expression of adaptor protein-3 (AP-3) complex. Localization studies in cell lines expressing β3 and δ subunits of AP-3 fused to epitope tags revealed their partial co-localization with the vacuolar proton pyrophosphatase, a marker of acidocalcisomes, with the Golgi marker Golgi reassembly and stacking protein, and with antibodies against the small GTPase Rab11. Ablation of the β3 subunit by RNA interference (RNAi) resulted in disappearance of acidocalcisomes from both procyclic and bloodstream form trypanosomes, as revealed by immmunofluorescence and electron microscopy assays, with no alterations in trafficking of different markers to lysosomes. Knockdown of the β3 subunit resulted in lower acidic calcium, pyrophosphate, and polyphosphate content as well as defects in growth in culture, resistance to osmotic stress, and virulence in mice. Similar results were obtained by knocking down the expression of the δ subunit of AP-3. These results indicate that AP-3 is essential for the biogenesis of acidocalcisomes and for growth and virulence of T. brucei.


International Review of Cell and Molecular Biology | 2013

New Insights into Roles of Acidocalcisomes and Contractile Vacuole Complex in Osmoregulation in Protists

Roberto Docampo; Veronica Jimenez; Noelia Lander; Zhu-Hong Li; Sayantanee Niyogi

While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.


PLOS Pathogens | 2013

Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin.

Zhu-Hong Li; Srinivasan Ramakrishnan; Boris Striepen; Silvia N. J. Moreno

Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites.


European Journal of Medicinal Chemistry | 2013

Design, synthesis and biological evaluation of sulfur-containing 1, 1-bisphosphonic acids as antiparasitic agents

Marion Recher; Alejandro P. Barboza; Zhu-Hong Li; Melina Galizzi; Mariana Ferrer-Casal; Sergio H. Szajnman; Roberto Docampo; Silvia N. J. Moreno; Juan B. Rodriguez

As part of our efforts aimed at searching for new antiparasitic agents, 2-alkylmercaptoethyl-1,1-bisphosphonate derivatives were synthesized and evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and Toxoplasma gondii, the responsible agent for toxoplasmosis. Many of these sulfur-containing bisphosphonates were potent inhibitors against the intracellular form of T. cruzi, the clinically more relevant replicative form of this parasite, and tachyzoites of T. gondii targeting T. cruzi or T. gondii farnesyl diphosphate synthases (FPPSs), which constitute valid targets for the chemotherapy of these parasitic diseases. Interestingly, long chain length sulfur-containing bisphosphonates emerged as relevant antiparasitic agents. Taking compounds 37, 38, and 39 as representative members of this class of drugs, they exhibited ED(50) values of 15.8 μM, 12.8 μM, and 22.4 μM, respectively, against amastigotes of T. cruzi. These cellular activities matched the inhibition of the enzymatic activity of the target enzyme (TcFPPS) having IC(50) values of 6.4 μM, 1.7 μM, and 0.097 μM, respectively. In addition, these compounds were potent anti-Toxoplasma agents. They had ED(50) values of 2.6 μM, 1.2 μM, and 1.8 μM, respectively, against T. gondii tachyzoites, while they exhibited a very potent inhibitory action against the target enzyme (TgFPPS) showing IC(50) values of 0.024 μM, 0.025 μM, and 0.021 μM, respectively. Bisphosphonates bearing a sulfoxide unit at C-3 were also potent anti-Toxoplasma agents, particularly those bearing long aliphatic chains such as 43-45, which were also potent antiproliferative drugs against tachyzoites of T. gondii. These compounds inhibited the enzymatic activity of the target enzyme (TgFPPS) at the very low nanomolar range. These bisphosphonic acids have very good prospective not only as lead drugs but also as potential chemotherapeutic agents.


Journal of Biological Chemistry | 2012

A 43-Nucleotide U-rich Element in 3′-Untranslated Region of Large Number of Trypanosoma cruzi Transcripts Is Important for mRNA Abundance in Intracellular Amastigotes

Zhu-Hong Li; Javier G. De Gaudenzi; Vanina E. Alvarez; Nicolás Mendiondo; Haiming Wang; Jessica C. Kissinger; Alberto C.C. Frasch; Roberto Docampo

Background: Trypanosoma cruzi regulates gene expression by means of post-transcriptional mechanisms. Results: A 43-nt U-rich element was found in the 3′-UTR of a large number of mRNAs that are more abundant in intracellular amastigotes. Conclusion: The 43-nt U-rich element might be involved in the modulation of abundance and/or translation of transcripts in amastigotes. Significance: Results suggest the existence of stage-specific RNA regulons in T. cruzi. Trypanosoma cruzi, the agent of Chagas disease, does not seem to control gene expression through regulation of transcription initiation and makes use of post-transcriptional mechanisms. We report here a 43-nt U-rich RNA element located in the 3′-untranslated region (3′-UTR) of a large number of T. cruzi mRNAs that is important for mRNA abundance in the intracellular amastigote stage of the parasite. Whole genome scan analysis, differential display RT-PCR, Northern blot, and RT-PCR analyses were used to determine the transcript levels of more than 900 U-rich-containing mRNAs of large gene families as well as single and low copy number genes. Our results indicate that the 43-nt U-rich mRNA element is preferentially present in amastigotes. The cis-element of a protein kinase 3′-UTR but not its mutated version promoted the expression of the green fluorescent protein reporter gene in amastigotes. The regulatory cis-element, but not its mutated version, was also shown to interact with the trypanosome-specific RNA-binding protein (RBP) TcUBP1 but not with other related RBPs. Co-immunoprecipitation experiments of TcUBP1-containing ribonucleoprotein complexes formed in vivo validated the interaction with representative endogenous RNAs having the element. These results suggest that this 43-nt U-rich element together with other yet unidentified sequences might be involved in the modulation of abundance and/or translation of subsets of transcripts in the amastigote stage.


Experimental Parasitology | 2008

Farnesyl Diphosphate Synthase Localizes to the Cytoplasm of Trypanosoma cruzi and T.brucei

Marcela Ferella; Zhu-Hong Li; Björn Andersson; Roberto Docampo

The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes.


Advances in Parasitology | 2011

The Role of Acidocalcisomes in the Stress Response of Trypanosoma cruzi

Roberto Docampo; Veronica Jimenez; Sharon King-Keller; Zhu-Hong Li; Silvia N. J. Moreno

Acidocalcisomes of Trypanosoma cruzi are acidic calcium-containing organelles rich in phosphorus in the form of pyrophosphate (PP(i)) and polyphosphate (poly P). Acidification of the organelles is driven by vacuolar proton pumps, one of which, the vacuolar-type proton pyrophosphatase, is absent in mammalian cells. A calcium ATPase is involved in calcium uptake, and an aquaporin is important for water transport. Enzymes involved in the synthesis and degradation of PPi and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, participate in PP(i) and poly P metabolism and volume regulation and are essential for virulence. A signalling pathway involving cyclic AMP generation is important for fusion of acidocalcisomes to the contractile vacuole complex, transference of aquaporin and volume regulation. This pathway is an excellent target for chemotherapy as shown by the effects of phosphodiesterase C inhibitors on parasite survival.

Collaboration


Dive into the Zhu-Hong Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto C.C. Frasch

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier G. De Gaudenzi

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan B. Rodriguez

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Sergio H. Szajnman

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Vanina E. Alvarez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge