Zhu Rixiang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhu Rixiang.
Science China-earth Sciences | 2011
Zhu Rixiang; Chen Ling; Wu Fuyuan; Liu Junlai
The North China Craton (NCC) is a classical example of ancient destroyed cratons. Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China, numerous studies have been conducted on the timing, scale, and mechanism of this destruction through combined interdisciplinary research. Available data suggest that the destruction occurred mainly in the eastern NCC, whereas the western NCC was only locally modified. The sedimentation, magmatic activities and structural deformation after cratonization at ∼1.8 Ga indicate that the NCC destruction took place in the Mesozoic with a peak age of ca 125 Ma. A global comparison suggests that most cratons on Earth are not destroyed, although they have commonly experienced lithospheric thinning; destruction is likely to occur only when the craton has been disturbed by oceanic subduction. The destruction of the NCC was coincident with globally active plate tectonics and high mantle temperatures during the Cretaceous. The subducted Pacific slab destabilized mantle convection beneath the eastern NCC, which resulted in cratonic destruction in the eastern NCC. Delamination and/or thermal-mechanical-chemical erosion resulted from the destabilization of mantle convection.
Science China-earth Sciences | 2004
Zhai Mingguo; Zhu Rixiang; Liu Jianming; Meng Qingren; Hou Quanlin; Hu Shengbiao; Liu Wei; Li Zhong; Zhang Hongfu; Zhang Huafeng
An important tectonic inversion took place in eastern North China Block(NCB) during Mesozoic, which caused a great lithosphere thinning, reconstruction of basin-range series, powerful interaction between mantle and crust, a vast granitic intrusion and volcanism, and large-scale metallogenic explosion. The time range of the Mesozoic tectonic regime inversion in the eastern North China Block is one of the key issues to understand mechanism of tectonic regime inversion. Our updated results for recognizing the time range are mainly obtained from the following aspects: structural analyses along northern and southern margins of the NCB and within the NCB for revealing tectonic inversion from compression to extension and structural striking from ~EW to NNE; geothermic analyses of the eastern sedimental basins for a great change of thermal history and regime; basin analysis for basin inversion from compression to extension and basin migration from ~EW to NNE; petrological and geochemical studies of volcanic rocks and lowermost crust xenoliths for recognizing peak period of mantle upwelling and intense interaction between mantle and crust, and main metallogenic epoch. All the studies of the above give the same time range from~150-140 Ma to~110-100Ma, peaking at ~120 Ma.
Science China-earth Sciences | 1998
Zhu Rixiang; Yang Zhenyu; Wu Hanning; Ma Xinghua; Huang Baochun; Meng Zifang; Fang Dajun
Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China. North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid-low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics. its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late-Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late-Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia-NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°—8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors-like collision procedure that produced intensive compression in the eastern part of suturing zone between the NCB and YZB, in which continental crust subducted into the upper mantle in the Late Permian, and then the ultrahigh-pressure rocks extruded in the Late Triassic. Paleomagnetic data also indicate that three major blocks have been together clockwise rotating about 20° relative to present-day rotation axis since the Late Jurassic. It was proposed that Lahsa Block and India subcontinent successively northward subducted and collided with Eurasia or collision between Pacific/Philippines plates and Eurasia might be responsible for this clockwise rotating of Chinese continent.
Science in China Series D: Earth Sciences | 2000
Zhu Rixiang; Guo Bin; Pan Yongxin; Liu Qingsong; A. Zeman; V. Suchy
An investigation of the rock magnetic properties using stepwise isothermal remanence (IRM) acquisition, thermomagnetic analysis and temperature-dependent susceptibility history, identifies magnetite as the carrier of the main fraction of the remanence, associated with maghemite and hematite in Malan loess (L1), Holocene soil (S0) and last-glacial paleosol (S1). The presence of short-lived direction fluctuations indicates that no significant smoothing occurs in L1 when its remanence is locked, and thus L1 is capable of recording the geomagnetic secular variation (PSV), while the PSV has been severely smoothed or wiped out by pedogenic processes during S1 formation. It has been suggested that the Mono Lake and Laschamp excursions are two independent geomagnetic events based on this study.
Science China-earth Sciences | 2006
Zhu Rixiang; Liu Qingsong; Pan Yongxin; Deng Chenglong; Zhang Rui; Wang Xianfeng
The first-order chronological framework of the long-term Chinese loess/paleosol sequences was based mainly on magnetostratigraphy. However, there remain arguments on the lock-in ages of the major geomagnetic reversals. This study systematically compared the stratigraphic locations of the Laschamp excursion and Henrich events (H4 at ∼39 ka and H5 at ∼48 ka) recorded by the Luochuan loess profile in the central Chinese Loess Plateau. Results show that the Lascchamp excursion is bracketed well by these two cold events, and the corresponding estimated age is between about 41.7–43.7 ka, which is close to the widely accepted age of ∼40–41 ka for the excursion. Therefore, our new results do not suggest apparent lock-in effects in the last glacial Malan loess.
Science China-earth Sciences | 2006
Wang Fei; He Huaiyu; Zhu Rixiang; Sang Haiqing; Wang Yinglan; Yang Liekun
Four international standards, Ga1550, MMhb-1, Lp-6, Bem 4M, and one domestic standard BT-1 have been intercalibrated. The repeated measurements on MMhb-1 with different mass demonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma. The results of Bern 4M and Lp-6 reflect that they have an invariable value of 40Ar*/39Ark (F) and the ages we obtained are consensus with their K-Ar age: Lp-6=127.7Ma; Bern 4M=18.2 Ma. Analyses of BT-1 age spectra, Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneous and invariable and keeps close chemically, with its trapped argon isotope composition close to the atmosphere. The dating results show that age values are reproducible and steady, total fusion age, step-heating age, plateau age and isochron age are in accord with each other within the error range (2σ). Therefore, we recommend 28.7 Ma as the calibrated age of BT-1.We also discuss the variation in neutron flux gradients of Beijing 49-2 reactor. It was found that the neutron flux gradient varies considerably, and more monitors (standard samples) are needed to fix the trend of variation. The coefficient of the 49-2 reactor that transfers the ratio of production rate of 37ArCa/39ArK into Ca/K ratio is 1.78. This is different from that reported earlier, 2.0, which may be caused by the reconstruction of the reactor.
Science China-earth Sciences | 2001
Zhu Rixiang; Shi Caidong; V. Suchy; A. Zeman; Guo Bin; Pan Yongxin
Detailed rock magnetic investigations and X-ray diffraction (XRD) were carried out on loess-paleosol sequences of the last interglacial-glacial at Znojmo section in Czech Republic. The results indicate that pedogenesis causes susceptibility enhancement in the paleosols, which is similar to that observed in the Chinese Loess Plateau.κ-T curves, IRM, and XRD show that magnetite is the dominant magnetic mineral in the loess-paleosol sequences at the Znojmo section, while maghemite, hematite, and pyrite/pyrrhotite are minor minerals. Measurements of anisotropy of magnetic susceptibility (AMS) indicate that the magnetic lineation is smaller than the foliation. The susceptibility ellipsoids are oblate and the directions of the maximum principal axes (Κmax) are distributed randomly, and cannot be used to determine the paleo-wind direction.
Chinese Science Bulletin | 2001
Pan Yongxin; Zhu Rixiang; John Shaw; Zhou Yaoxiu
Rock-magnetic and palaeomagnetic studies have been carried out on the interval of famous fossil-bearing sedimentary rocks and its overlying basalts and underlying basalts at the Sihetun section, West Liaoning Province. Normal polarity was obtained for the sedimentary interval and the underlying basalts, while reversed polarity was found in the overlying basalts. Taking account of the new40Ar/39Ar ages (Swisher et al., 1999), we classified the fossil-bearing sedimentary interval into the Barremian M3n zone (Early Cretaceous age). Several abnormal horizons on magnetic properties, probably corresponding to the tuffs, were observed in the fossil-bearing sedimentary interval. This implies that the massive bio-extinction may link to dramatic environmental changes that were caused by volcanic eruptions.
Science China-earth Sciences | 1998
Wu Hanning; Zhu Rixiang; Bai Lixin; Guo Bin; Lü Jianjun
Paleornagnetic data, during the Phanerozoic obtained in the last 20 years in the Yangtze Block (YZB), are critically reviewed. A new apparent polar wander path (APWP) for the YZB is constructed by selected poles with objective reliable criteria, with a goal of placing constraints on the models of the formation and subsequent deformation and reconstructing the tectonic evolution history of this region.
Chinese Science Bulletin | 2007
Qiu Xue-lin; Chen Yong; Zhu Rixiang; Xu Hui-long; Shi Xiaobin; Ye Chun-ming; Zhao Minghui; Xia Shaohong
Onshore-offshore seismic experiments were carried out for the first time in northern South China Sea using large volume airgun sources at sea and seismic stations on land. The experimental results indicate that seismic signals from the new airgun array of R/V Shiyan 2 can be detected as far as 255 km. The signal effective area reaches nearly 50000 km2, which covers Hong Kong and Pearl River Delta. Compared with the old airgun array, the signal amplitude, propagation distance and effective area of the new airgun array have been increased notably, which demonstrates that the upgrade of the airgun source was successful. Comparisons with previous experimental results in other regions show that the shooting effect of the new airgun array is similar to those best airgun sources in the world. Especially, it is a new breakthrough in using the permanent seismic stations onshore to record long distance airgun signals offshore, which has great significance to the realization of the “seismic radar” concept and the 3D seismic surveys of crustal structure in coastal areas.