Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhuguo Ma is active.

Publication


Featured researches published by Zhuguo Ma.


Journal of Climate | 2012

Simulating the Regional Impacts of Urbanization and Anthropogenic Heat Release on Climate across China

Jinming Feng; Yongli Wang; Zhuguo Ma; Yonghe Liu

AbstractTogether with economic development and accelerated urbanization, the urban population in China has been increasing rapidly, and anthropogenic heat released by large-scale energy consumption in cities is expected to be a vital factor affecting the climate. In this paper, the Weather Research and Forecasting (WRF) model coupled with the Urban Canopy Model (UCM) is employed to simulate the regional impacts on climate under the two scenarios: the underlying surface changes due to urbanization (USCU) and anthropogenic heat release (AHR). Three experiments were performed from December 2006 to December 2008. With respect to the USCU, the surface albedo and the available surface soil water decrease markedly. With the inclusion of AHR, the two scenarios give rise to increased surface temperatures over most areas of China. Especially in the urban agglomeration area of the Yangtze River delta, the combination of USCU and AHR could result in an increase of 2°C in the surface air temperature. The influence of ...


Journal of Geophysical Research | 2014

Multiyear precipitation reduction strongly decreases carbon uptake over northern China

Wenping Yuan; Dan Liu; Wenjie Dong; Shuguang Liu; Guangsheng Zhou; Guirui Yu; Tianbao Zhao; Jinming Feng; Zhuguo Ma; Jiquan Chen; Yang Chen; Shiping Chen; Shijie Han; Jianping Huang; Linghao Li; Huizhi Liu; Shaoming Liu; Mingguo Ma; Yanfeng Wang; Jiangzhou Xia; Wenfang Xu; Qiang Zhang; Xinquang Zhao; Liang Zhao

Drought has been a concern in global and regional water, carbon, and energy cycles. From 1999 to 2011, northern China experienced a multiyear precipitation reduction that significantly decreased water availability as indicated by the Palmer Drought Severity Index and soil moisture measurements. In this study, a light use efficiency model (EC-LUE) and an ecosystem physiological model (IBIS) were used to characterize the impacts of long-term drought on terrestrial carbon fluxes in northern China. EC-LUE and IBIS models showed the reduction of averaged GPP of 0.09 and 0.05 Pg C yr-1 during 1999-2011 compared with 1982-1998. Based on the IBIS model, simulated ecosystem respiration experienced an insignificant decrease from 1999 to 2011. The multiyear precipitation reduction changed the regional carbon uptake of 0.011 Pg C yr-1 from 1982 to 1998 to a net source of 0.018 Pg C yr-1 from 1999 to 2011. Moreover, a pronounced decrease in maize yield in almost all provinces in the study region was found from 1999 to 2011 versus the average of yield from1978 to 2011. The largest maize yield reduction occurred in Beijing (2499kgha-1yr-1), Jilin (2180kgha-1yr-1), Tianjing (1923kgha-1yr-1), and Heilongjiang (1791kgha-1yr-1), and the maize yield anomaly was significantly correlated with the annual precipitation over the entire study area. Our results revealed that recent climate change, especially drought-induced water stress, is the dominant cause of the reduction in the terrestrial carbon sink over northern China.


Journal of remote sensing | 2013

Validation of MODIS-GPP product at 10 flux sites in northern China

Xufeng Wang; Mingguo Ma; Xin Li; Yi Song; Junlei Tan; Guanghui Huang; Zhihui Zhang; Tianbao Zhao; Jinming Feng; Zhuguo Ma; Wei Wei; Yanfen Bai

Gross primary production (GPP) is an important variable in studies of the carbon cycle and climate change. The Moderate Resolution Imaging Spectroradiometer (MODIS)-GPP product (MOD17) provides global GPP data for terrestrial ecosystems; however, it is not well validated in China. In this study, an eddy covariance (EC) system observed GPP at 10 sites in northern China and was used to validate MOD17. The results indicated that MOD17 presents a strong bias in the study region due to the meteorological data, MODIS FPAR (fraction of absorbed photosynthetically active radiation) (MOD15), and the model parameters in the MODIS-GPP algorithm, Biome Parameters Look Up Table (BPLUT). Maximum light-use efficiency (ϵ0) had the strongest impact on the predicted GPP of the MODIS-GPP algorithm. After using the inputs observed in situ and improving parameters in the MODIS-GPP algorithm, the model could explain 85% of the EC-observed GPP of the sites, whereas the MODIS-GPP algorithm without in situ inputs and parameters only explained 26% of EC-observed GPP.


Climatic Change | 2015

Land use/land cover changes and regional climate over the Loess Plateau during 2001–2009. Part II: interrelationship from observations

Xingang Fan; Zhuguo Ma; Qing Yang; Yunhuan Han; Rezaul Mahmood

Afforestation efforts in China resulted in significant changes in vegetation coverage over the Loess Plateau during 2001–2009. While regional climate conditions dominate the distribution of major vegetation types, human activities, primarily afforestation/reforestation and the resultant land use/land cover (LULC) changes (LULCC) and their impacts, are the focus of this study. A new attribution method was developed and applied to observed data for investigating the interrelationships between climate variation and LULCC. Regional climate (temperature and precipitation) changes are attributed to climate variation and LULCC; LULCC is attributed to climate variation and human activities. Climate attribution analysis indicated a larger contribution ratio (based on comparison of standard deviations of each contributing factor-induced climate changes and that of total change) from climate variation than from LULCC (0.95 from climate variation vs. 0.35 from LULCC) for variations in temperature. Impacts on precipitation indicated more spatial variations than those on temperature. The spatial variation of LULCC impacts on precipitation implied that human activities might have larger impacts on precipitation in the region’s arid north than in its humid south. Using both leaf area index (LAI) and areal coverage of each of the major land types, LULCC attribution analysis suggested that LULCC observed in the 2000s resulted primarily from human activities rather than climate variations (0.99 contribution ratio from human activities vs. 0.26 from climate variation).


Advances in Atmospheric Sciences | 2014

An analysis of historical and future temperature fluctuations over China based on CMIP5 simulations

Yonghe Liu; Jinming Feng; Zhuguo Ma

The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed. In general, the historical simulations replicate the observed increase of temperature, but the multi-model ensemble (MME) mean does not accurately reproduce the drastic interannual fluctuations. The correlation coefficient of the MME mean with the observations over all runs and all models was 0.77, which was larger than the largest value (0.65) from any single model ensemble. The results showed that winter temperatures are increasing at a higher rate than summer temperatures, and that winter temperatures exhibit stronger interannual variations. It was also found that the models underestimate the differences between winter and summer rates. The ensemble empirical mode decomposition technique was used to obtain six intrinsic mode functions (IMFs) for the modeled temperature and observations. The periods of the first two IMFs of the MME mean were 3.2 and 7.2, which represented the cycle of 2–7-yr oscillations. The periods of the third and fourth IMFs were 14.7 and 35.2, which reflected a multi-decadal oscillation of climate change. The corresponding periods of the first four IMFs were 2.69, 7.24, 16.15 and 52.5 in the observed data. The models overestimate the period of low frequency oscillation of temperature, but underestimate the period of high frequency variation. The warming rates from different representative concentration pathways (RCPs) were calculated, and the results showed that the temperature will increase by approximately 0.9°C, 2.4°C, 3.2°C and 6.1°C in the next century under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios, respectively.


PLOS ONE | 2014

Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia

Jiangzhou Xia; Shunlin Liang; Jiquan Chen; Wenping Yuan; Shuguang Liu; Linghao Li; Wenwen Cai; Li Zhang; Yang Fu; Tianbao Zhao; Jinming Feng; Zhuguo Ma; Mingguo Ma; Shaomin Liu; Guangsheng Zhou; Jun Asanuma; Shiping Chen; Mingyuan Du; Gombo Davaa; Tomomichi Kato; Qiang Liu; Suhong Liu; Shenggong Li; Changliang Shao; Yanhong Tang; Xiang Zhao

The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr−1 over the DEA region with an average of 245.8 mm yr−1 from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions.


International Journal of Digital Earth | 2013

Preliminary validation of GLASS-DSSR products using surface measurements collected in arid and semi-arid regions of China

Guanghui Huang; Weizhen Wang; Xiaotong Zhang; Shunlin Liang; Shaomin Liu; Tianbao Zhao; Jinming Feng; Zhuguo Ma

Global Land Surface Satellite-downward surface shortwave radiation (GLASS-DSSR) products have been routinely produced from 2008–2010 based on an improved look-up table algorithm, which explicitly accounts for the variations of cloud optical depth, water vapor content, and elevation. In this study, we validated and assessed the accuracy of these products in arid and semiarid regions of China. Toward this goal, observation data-sets provided by the Arid and Semiarid Region Collaborative Observation Project as well as four other metrological sites were collected, chosen, and preprocessed for the final validation. Due to the possible effect of spatial collocation and the strong adjacency pixel effect in instantaneous products, we used a more sophisticated validating scheme in order to reduce the impacts from these effects as much as possible. Evidences indicate that the GLASS-DSSR products are considerably accurate over most parts of arid and semiarid regions in China, but in complex terrain areas the products might need further refinements. The R2 at all sites (except Naqu) was larger than 0.8 with a root mean square error (RMSE) range of about in 90–130 W/m2. Linear regression analyses suggest that GLASS-DSSR products tend to overestimate DSSR in the interval of low surface-measured values and symmetrically underestimate DSSR in the interval of high values. This systematic error may result from inappropriate assumptions about clouds and aerosol loadings over the regions in the operational algorithm.


Climatic Change | 2017

Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation

Qing Yang; Zhuguo Ma; Baoliang Xu

Previous studies suggest that the Pacific Decadal Oscillation (PDO) modulates annual and summer precipitation patterns over East China. In this study, the effect of the PDO on monthly precipitation anomalies over this region is investigated. The new results show that the effect is month-dependent. The well-known North–South dipole patterns of annual precipitation are dominated by the July–August precipitation. In other months, the corresponding patterns vary in strength, position, and even shape. For example, the May and June precipitation patterns show opposite signs to the July–August or annual mean patterns, whereas the September–December monthly precipitation anomalies show a triple pattern. Monthly precipitation patterns over East China are largely determined by large-scale moisture transport controlled by atmospheric circulation. The PDO affects East China precipitation patterns by modulating the large-scale circulation pattern.


Journal of Climate | 2017

Decadal Modulation of Precipitation Patterns over Eastern China by Sea Surface Temperature Anomalies

Qing Yang; Zhuguo Ma; Xingang Fan; Zong-Liang Yang; Zhongfeng Xu; Peili Wu

AbstractAnnual precipitation anomalies over eastern China are characterized by a north–south dipole pattern, referred to as the “southern flooding and northern drought” pattern (SF/ND), fluctuating on decadal time scales. Previous research has suggested possible links with oceanic forcing, but the underlying physical mechanisms by which sea surface temperature (SST) variability impacts the dipole pattern remains unclear. Idealized atmospheric general circulation model experiments conducted by the U.S. CLIVAR Drought Working Group are used to investigate the role of historical SST anomalies associated with Pacific El Nino–Southern Oscillation (ENSO)-like and the Atlantic multidecadal oscillation (AMO) patterns in this dipole pattern. The results show that the Pacific SST pattern plays a dominant role in driving the decadal variability of this dipole pattern and the associated atmospheric circulation anomalies, whereas the Atlantic SST pattern contributes to a much lesser degree. The direct atmospheric resp...


Science China-earth Sciences | 2017

Regional applicability of seven meteorological drought indices in China

Qing Yang; Mingxing Li; Ziyan Zheng; Zhuguo Ma

The definition of a drought index is the foundation of drought research. However, because of the complexity of drought, there is no a unified drought index appropriate for different drought types and objects at the same time. Therefore, it is crucial to determine the regional applicability of various drought indices. Using terrestrial water storage obtained from the Gravity Recovery And Climate Experiment, and the observed soil moisture and streamflow in China, we evaluated the regional applicability of seven meteorological drought indices: the Palmer Drought Severity Index (PDSI), modified PDSI (PDSI_CN) based on observations in China, self-calibrating PDSI (scPDSI), Surface Wetness Index (SWI), Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and soil moisture simulations conducted using the community land model driven by observed atmospheric forcing (CLM3.5/ObsFC). The results showed that the scPDSI is most appropriate for China. However, it should be noted that the scPDSI reduces the value range slightly compared with the PDSI and PDSI_CN; thus, the classification of dry and wet conditions should be adjusted accordingly. Some problems might exist when using the PDSI and PDSI_CN in humid and arid areas because of the unsuitability of empiricalparameters. The SPI and SPEI are more appropriate for humid areas than arid and semiarid areas. This is because contributions of temperature variation to drought are neglected in the SPI, but overestimated in the SPEI, when potential evapotranspiration is estimated by the Thornthwaite method in these areas. Consequently, the SPI and SPEI tend to induce wetter and drier results, respectively. The CLM3.5/ObsFC is suitable for China before 2000, but not for arid and semiarid areas after 2000. Consistent with other drought indices, the SWI shows similar interannual and decadal change characteristics in detecting annual dry/wet variations. Although the long-term trends of drought areas in China detected by these seven drought indices during 1961–2013 are consistent, obvious differences exist among the values of drought areas, which might be attributable to the definitions of the drought indices in addition to climatic change.

Collaboration


Dive into the Zhuguo Ma's collaboration.

Top Co-Authors

Avatar

Jinming Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tianbao Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingxing Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ziyan Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenping Yuan

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Guirui Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongping Gu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiangzhou Xia

Beijing Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge