Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhuo Georgia Chen is active.

Publication


Featured researches published by Zhuo Georgia Chen.


International Journal of Nanomedicine | 2008

Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

Xiang Hong Peng; Ximei Qian; Hui Mao; Andrew Y. Wang; Zhuo Georgia Chen; Shuming Nie; Dong M. Shin

Magnetic iron oxide (IO) nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which and generate significant susceptibility effects resulting in strong T2 and T2* contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.


Cancer Research | 2011

Detection of Circulating Tumor Cells in Human Peripheral Blood using Surface-Enhanced Raman Scattering Nanoparticles

Xu Wang; Ximei Qian; Jonathan J. Beitler; Zhuo Georgia Chen; Fadlo R. Khuri; Melinda M. Lewis; Hyung Ju C. Shin; Shuming Nie; Dong M. Shin

The detection and characterization of circulating tumor cells (CTC) holds great promise for personalizing medicine and optimizing systemic therapy. However, low specificity, low sensitivity, and the time consuming nature of current approaches have impeded clinical adoption. Here we report a new method using surface-enhanced Raman spectroscopy (SERS) to directly measure targeted CTCs in the presence of white blood cells. SERS nanoparticles with epidermal growth factor peptide as a targeting ligand have successfully identified CTCs in the peripheral blood of 19 patients with squamous cell carcinoma of the head and neck (SCCHN), with a range of 1 to 720 CTCs per milliliter of whole blood. Our technique may provide an important new clinical tool for management of patients with SCCHN and other cancers.


Cancer Research and Treatment | 2009

Advances of cancer therapy by nanotechnology.

Xu Wang; Yiqing Wang; Zhuo Georgia Chen; Dong M. Shin

Recent developments in nanotechnology offer researchers opportunities to significantly transform cancer therapeutics. This technology has enabled the manipulation of the biological and physicochemical properties of nanomaterials to facilitate more efficient drug targeting and delivery. Clinical investigations suggest that therapeutic nanoparticles can enhance efficacy and reduced side effects compared with conventional cancer therapeutic drugs. Encouraged by rapid and promising progress in cancer nanotechnology, researchers continue to develop novel and efficacious nanoparticles for drug delivery. The use of therapeutic nanoparticles as unique drug delivery systems will be a significant addition to current cancer therapeutics.


Cancer Prevention Research | 2013

New perspectives of curcumin in cancer prevention

Wungki Park; Amin Ar; Zhuo Georgia Chen; Dong M. Shin

Numerous natural compounds have been extensively investigated for their potential for cancer prevention over the decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nonetheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here, we review the potential of curcumin in cancer prevention, its molecular targets, and mechanisms of action. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. Cancer Prev Res; 6(5); 387–400. ©2013 AACR.


Molecular Cancer Therapeutics | 2013

Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer

Rui Li; Zhongliang Hu; Shi-Yong Sun; Zhuo Georgia Chen; Taofeek K. Owonikoko; Gabriel Sica; Suresh S. Ramalingam; Walter J. Curran; Fadlo R. Khuri; Xingming Deng

The emergence of resistance to EGF receptor (EGFR) inhibitor therapy is a major clinical problem for patients with non–small cell lung cancer (NSCLC). The mechanisms underlying tumor resistance to inhibitors of the kinase activity of EGFR are not fully understood. Here, we found that inhibition of EGFR by erlotinib induces STAT3 phosphorylation at Tyr705 in association with increased Bcl2/Bcl-XL at both mRNA and protein levels in various human lung cancer cells. PTPMeg2 is a physiologic STAT3 phosphatase that can directly dephosphorylate STAT3 at the Tyr705 site. Intriguingly, treatment of cells with erlotinib results in downregulation of PTPMeg2 without activation of STAT3 kinases [i.e., Janus-activated kinase (JAK2) or c-Src], suggesting that erlotinib-enhanced phosphorylation of STAT3 may occur, at least in part, from suppression of PTPMeg2 expression. Because elevated levels of phosphorylated STAT3 (pSTAT3), Bcl2, and Bcl-XL were observed in erlotinib-resistant lung cancer (HCC827/ER) cells as compared with erlotinib-sensitive parental HCC827 cells, we postulate that the erlotinib-activated STAT3/Bcl2/Bcl-XL survival pathway may contribute to acquired resistance to erlotinib. Both blockage of Tyr705 phosphorylation of STAT3 by niclosamide and depletion of STAT3 by RNA interference in HCC827/ER cells reverse erlotinib resistance. Niclosamide in combination with erlotinib potently represses erlotinib-resistant lung cancer xenografts in association with increased apoptosis in tumor tissues, suggesting that niclosamide can restore sensitivity to erlotinib. These findings uncover a novel mechanism of erlotinib resistance and provide a novel approach to overcome resistance by blocking the STAT3/Bcl2/Bcl-XL survival signaling pathway in human lung cancer. Mol Cancer Ther; 12(10); 2200–12. ©2013 AACR.


Journal of Biological Chemistry | 2010

Enhanced Anti-tumor Activity by the Combination of the Natural Compounds (−)-Epigallocatechin-3-gallate and Luteolin: POTENTIAL ROLE OF p53*

A.R.M. Ruhul Amin; Dongsheng Wang; Hongzheng Zhang; Shifang Peng; Hyung Ju C. Shin; Johann C. Brandes; Mourad Tighiouart; Fadlo R. Khuri; Zhuo Georgia Chen; Dong M. Shin

Natural dietary agents have drawn a great deal of attention toward cancer prevention because of their wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasingly popularity. In the present study, we investigated a combinatorial approach using two natural dietary polyphenols, luteolin and EGCG, and found that their combination at low doses (at which single agents induce minimal apoptosis) synergistically increased apoptosis (3–5-fold more than the additive level of apoptosis) in both head and neck and lung cancer cell lines. This combination also significantly inhibited growth of xenografted tumors in nude mice. The in vivo findings also were supported by significant inhibition of Ki-67 expression and increase in TUNEL-positive cells in xenografted tissues. Mechanistic studies revealed that the combination induced mitochondria-dependent apoptosis in some cell lines and mitochondria-independent apoptosis in others. Moreover, we found more efficient stabilization and ATM-dependent Ser15 phosphorylation of p53 due to DNA damage by the combination, and ablation of p53 using shRNA strongly inhibited apoptosis as evidenced by decreased poly(ADP-ribose) polymerase and caspase-3 cleavage. In addition, we observed mitochondrial translocation of p53 after treatment with luteolin or the combination of EGCG and luteolin. Taken together, our results for the first time suggest that the combination of luteolin and EGCG has synergistic/additive growth inhibitory effects and provides an important rationale for future chemoprevention trials of head and neck and lung cancers.


Journal of Controlled Release | 2012

Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth

Mohammad Aminur Rahman; A.R.M. Ruhul Amin; Xu Wang; Jonathan E. Zuckerman; Chung Hang J. Choi; Bingsen Zhou; Dongsheng Wang; Sreenivas Nannapaneni; Lydia Koenig; Zhengjia Chen; Zhuo Georgia Chen; Yun Yen; Mark E. Davis; Dong M. Shin

Systemic delivery of siRNA to solid tumors remains challenging. In this study, we investigated the systemic delivery of a siRNA nanoparticle targeting ribonucleotide reductase subunit M2 (RRM2), and evaluated its intratumoral kinetics, efficacy and mechanism of action. Knockdown of RRM2 by an RNAi mechanism strongly inhibited cell growth in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. In a mouse xenograft model of HNSCC, a single intravenous injection led to the accumulation of intact nanoparticles in the tumor that disassembled over a period of at least 3days, leading to target gene knockdown lasting at least 10days. A four-dose schedule of siRNA nanoparticle delivering RRM2 siRNA targeted to HNSCC tumors significantly reduced tumor progression by suppressing cell proliferation and inducing apoptosis. These results show promise for the use of RRM2 siRNA-based therapy for HNSCC and possibly NSCLC.


Oncogene | 2009

PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells.

Quanhong Sun; Lihua Ming; Sufi M. Thomas; Ying Nai Wang; Zhuo Georgia Chen; Robert L. Ferris; Jennifer R. Grandis; Lin Zhang; Jindan Yu

Overexpression of epidermal growth factor receptor (EGFR) is found in over 80% of head and neck squamous cell carcinomas (HNSCC) and associated with poor clinical outcomes. EFGR selective tyrosine kinase inhibitors (TKIs) or antibodies have recently emerged as promising treatments for solid tumors, including HNSCC, though the response rate to these agents is low. p53 upregulated modulator of apoptosis (PUMA), a BH3-only Bcl-2 family protein, is required for apoptosis induced by p53 and various chemotherapeutic agents. In this study, we show that PUMA induction is correlated with EGFR-TKI sensitivity, and is mediated through the p53 family protein p73β and inhibition of the PI3K/AKT pathway. In some HNSCC cells, the gefitinib-induced degradation of oncogenic ΔNp63 seems to facilitate p73-mediated PUMA transcription. Inhibiting PUMA expression by small hairpin RNA (shRNA) impairs gefitinib-induced apoptosis. Furthermore, PUMA or BH3 mimetics sensitize HNSCC cells to gefitinib-induced apoptosis. Our results suggest that PUMA induction through p73 represents a new mechanism of EGFR inhibitor-induced apoptosis, and provide potential ways for enhancing and predicting the sensitivity to EGFR-targeted therapies in HNSCC.


Cancer Cell | 2015

Small-Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy

Bingshe Han; Dongkyoo Park; Rui Li; Maohua Xie; Taofeek K. Owonikoko; Guojing Zhang; Gabriel Sica; Chunyong Ding; Jia Zhou; Andrew T. Magis; Zhuo Georgia Chen; Dong M. Shin; Suresh S. Ramalingam; Fadlo R. Khuri; Walter J. Curran; Xingming Deng

The BH4 domain of Bcl2 is required for its antiapoptotic function, thus constituting a promising anticancer target. We identified a small-molecule Bcl2-BH4 domain antagonist, BDA-366, that binds BH4 with high affinity and selectivity. BDA-366-Bcl2 binding induces conformational change in Bcl2 that abrogates its antiapoptotic function, converting it from a survival molecule to a cell death inducer. BDA-366 suppresses growth of lung cancer xenografts derived from cell lines and patient without significant normal tissue toxicity at effective doses. mTOR inhibition upregulates Bcl2 in lung cancer cells and tumor tissues from clinical trial patients. Combined BDA-366 and RAD001 treatment exhibits strong synergy against lung cancer in vivo. Development of this Bcl2-BH4 antagonist may provide a strategy to improve lung cancer outcome.


British Journal of Cancer | 2008

Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma

Zhang H; Su L; Müller S; Mourad Tighiouart; Xu Z; Zhang X; Shin Hj; Hunt J; Sun Sy; Dong M. Shin; Zhuo Georgia Chen

Caveolin-1 (Cav-1) plays an important role in modulating cellular signalling, but its role in metastasis is not well defined. A significant reduction in Cav-1 levels was detected in lymph node metastases as compared with primary tumour of head and neck squamous cell carcinoma (HNSCC) specimens (P<0.0001), confirming the downregulation of Cav-1 observed in a highly metastatic M4 cell lines derived from our orthotopic xenograft model. To investigate the function of Cav-1 in metastasis of HNSCC, we compared stable clones of M4 cells carrying human cav-1 cDNA (CavS) with cells expressing an empty vector (EV) in vitro and in the orthotopic xenograft model. Overexpression of Cav-1 suppressed growth of the CavS tumours compared with the EV tumours. The incidence of lung metastases was significantly lower in animals carrying CavS tumours than those with EV tumours (P=0.03). In vitro, CavS cells displayed reduced cell growth, invasion, and increased anoikis compared with EV cells. In CavS cells, Cav-1 formed complex with integrin β1 and Src. Further application of integrin β1 neutralising antibody or Src inhibitor PP2 to EV cells illustrated similar phenotypes as CavS cells, suggesting that Cav-1 may play an inhibitory role in tumorigenesis and lung metastasis through regulating integrin β1- and Src-mediated cell–cell and cell–matrix interactions.

Collaboration


Dive into the Zhuo Georgia Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge