Zhuoyu Li
Shanxi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhuoyu Li.
Biochimica et Biophysica Acta | 2012
Zongwei Li; Zhuoyu Li
Glucose regulated protein 78 (GRP78) has long been recognized as a molecular chaperone in the endoplasmic reticulum (ER) and can be induced by the ER stress response. Besides its location in the ER, GRP78 has been found to be present in cell plasma membrane, cytoplasm, mitochondria, nucleus as well as cellular secretions. GRP78 is implicated in tumor cell proliferation, apoptosis resistance, immune escape, metastasis and angiogenesis, and its elevated expression usually correlates with a variety of tumor microenvironmental stresses, including hypoxia, glucose deprivation, lactic acidosis and inflammatory response. GRP78 protein acts as a centrally located sensor of stress, which feels and adapts to the alteration in the tumor microenvironment. This article reviews the potential contributions of GRP78 to the acquisition of cancer hallmarks based on intervening in stress responses caused by tumor niche alterations. The paper also introduces several potential GRP78 relevant targeted therapies.
The International Journal of Biochemistry & Cell Biology | 2013
Zongwei Li; Lichao Zhang; Yarui Zhao; Hanqing Li; Hong Xiao; Rong Fu; Chao Zhao; Haili Wu; Zhuoyu Li
Glucose regulated protein 78 (GRP78) is predominantly located in the endoplasmic reticulum as a molecular chaperone. It has also been found on the membranes of some cancer cells, acting as a receptor for a wide variety of ligands. However, its presence on colorectal cancer (CRC) cell surface and its role in CRC metastatic progression remain elusive. Here we reported that GRP78 was predominantly present in the form of clustering aggregates on CRC cell surfaces, and its surface abundance was strongly correlated with CRC differentiation stage. Interestingly, we observed that cell-surface GRP78 had an interaction with the ECM adhesion molecule β1-integrin and was involved in cell-matrix adhesion through regulation of focal adhesion kinase (FAK). Moreover, the present data also implicated that surface GRP78 promoted the cell invasion process, and this effect was at least partly mediated through its association with uPA-uPAR protease system. Together, our data suggests that surface GRP78 promotes CRC cell migration and invasion by regulating cell-matrix adhesion and ECM degradation, which is independent of its signaling receptor function.
Cellular Signalling | 2014
Peng Yang; Zongwei Li; Rong Fu; Haili Wu; Zhuoyu Li
Understanding the mechanisms of colorectal cancer (CRC) metastatic progression is essential to reducing its morbidity and mortality. Pyruvate kinase (PK) catalyses the final step of glycolysis and has been identified as a critical regulator of glucose consumption. However, the mechanisms and roles of PKM1 and PKM2 in the regulation of CRC cell migration and cell adhesion remain elusive. Here, we report that PKM2 rather than PKM1 drives CRC cell migration and cell adhesion, whereas PKM attenuation reverses these phenomena. Furthermore, the overexpression of PKM2 significantly increases the expression of N-cadherin, MMP-2, MMP-9, STAT3, Snail-2, pFAK and active β1-integrin, while E-cadherin expression is suppressed. More importantly, the results indicated that PKM2 overexpression facilitates STAT3 nuclear translocation, and it is required for PKM2 function in the regulation of migration and adhesion associated signalling. In addition, the dimeric form of PKM2, which lacks the pyruvate kinase activities but possesses protein kinase activity, is critical for CRC cell migration and cell adhesion. Overall, this study suggests that PKM2 overexpression promotes CRC cell migration and cell adhesion by regulating STAT3-associated signalling and that PKM2 may serve as a therapeutic target for CRC metastasis.
Biochimica et Biophysica Acta | 2014
Zongwei Li; Peng Yang; Zhuoyu Li
Tumor cells undergo metabolic rewiring from oxidative phosphorylation towards aerobic glycolysis to maintain the increased anabolic requirements for cell proliferation. It is widely accepted that specific expression of the M2 type pyruvate kinase (PKM2) in tumor cells contributes to this aerobic glycolysis phenotype. To date, researchers have uncovered myriad forms of functional regulation for PKM2, which confers a growth advantage on the tumor cells to enable them to adapt to various microenvironmental signals. Here the richness of our understanding on the modulations and functions of PKM2 in tumor progression is reviewed, and some new insights into the paradoxical expression and functional differences of PKM2 in distinct cancer types are offered.
Cancer Biology & Therapy | 2015
Li Song; Zhuoyu Li; Weiping Liu; Meirong Zhao
Wnt/β-catenin and Hedgehog/Gli signalings play key roles in multiple biogenesis such as embryonic development and tissue homeostasis. Dysregulations of these 2 pathways are frequently found in most cancers, particularly in colon cancer. Their crosstalk has been increasingly appreciated as an important mechanism in regulating colon cancer progression. Our studies into the link between Wnt/β-catenin and Hedgehog/Gli signalings in colon cancer revealed several possible crosstalk points and suggested potential therapeutic strategies for colon cancer.
Journal of Cell Science | 2010
Dina Dikovskaya; Zhuoyu Li; Ian P. Newton; Iain Davidson; James R. A. Hutchins; Petr Kalab; Paul R. Clarke; Inke S. Näthke
Mutations in the tumour suppressor Adenomatous polyposis coli (Apc) initiate most sporadic colorectal cancers. Apc is implicated in regulating microtubule (MT) dynamics in interphase and mitosis. However, little is known about the underlying mechanism or regulation of this Apc function. We identified importin-β as a binding partner of Apc that regulates its effect on MTs. Apc binds importin-β in vitro and in Xenopus egg extracts, and RanGTP inhibits this interaction. The armadillo-like repeat domain of importin-β binds to the middle of Apc, where it can compete with β-catenin. In addition, two independent sites in the C terminus of Apc bind the N-terminal region of importin-β. Binding to importin-β reduces the ability of Apc to assemble and bundle MTs in vitro and to promote assembly of microtubule asters in Xenopus egg extracts, but does not affect the binding of Apc to MTs or to EB1. Depletion of Apc decreases the formation of cold-stable spindles in Xenopus egg extracts. Importantly, the ability of purified Apc to rescue this phenotype was reduced when it was constitutively bound to importin-β. Thus, importin-β binds to Apc and negatively regulates the MT-assembly and spindle-promoting activity of Apc in a Ran-regulatable manner.
Cellular Signalling | 2015
Peng Yang; Zongwei Li; Hanqing Li; Yangxu Lu; Haili Wu; Zhuoyu Li
Surgery-induced inflammation has been associated with cancer recurrence and metastasis in colorectal cancer (CRC). As a constituent of gram-negative bacteria, lipopolysaccharide (LPS) is frequently abundant in the peri-operative window. However, the definite roles of LPS in tumour progression remain elusive. Here we reported that LPS treatment increased PKM expression through activation of NF-κB signalling pathway, and knockdown of PKM reversed LPS-induced TNF-α, IL-1β production and cell proliferation in CRC cells. We further showed that the PKM2 but not PKM1 mediated the pro-inflammatory and proliferative effects of LPS. Interestingly, LPS promoted PKM2 binding to the STAT3 promoter to enhance STAT3 expression and its subsequent nuclear translocation. Depletion of STAT3 decreased PKM2-induced TNF-α and IL-1β expression, indicating that STAT3 mediates the pro-inflammatory effects of PKM2. Furthermore, it is the protein kinase activity but not the pyruvate kinase activity of PKM2 that is required for inflammatory cytokine production. Collectively, our findings reveal the NF-κB-PKM2-STAT3 axis as a novel mechanism for the regulation of TNF-α and IL-1β production and suggest the importance of PKM2 as a key inflammatory mediator in inflammatory microenvironment.
Biochemical and Biophysical Research Communications | 2013
Yanan Peng; Zongwei Li; Zhuoyu Li
Cancer-associated fibroblasts (CAFs), one type of tumor-associated stromal cells, have been shown to provide a favorable environment for the malignant tumor progression. Extensive reports have demonstrated that mesenchymal stem cells (MSCs) can function as precursors for CAFs. However, the mechanisms by which tumor cells induce the transition of MSCs to CAFs have not been well established. GRP78, traditionally known as an endoplasmic reticulum (ER) chaperone, has been identified to overexpress in a variety of tumor entities and be involved in promoting survival and chemoresistance of tumor cells. Here, we interrogated the role of GRP78 in the generation of CAFs from MSCs. The results showed that GRP78 treatment induced expression of α-smooth muscle actin (α-SMA), a marker for CAFs, in human bone marrow mesenchymal stem cells (HBMSCs) as well as murine bone marrow mesenchymal stem cells (BMMSCs). This phenomenon was correlated with the stimulated phosphorylation of Smad2/3. Furthermore, the GRP78-induced α-SMA expression in HBMSCs was obviously attenuated by SB431542, a TGF-β type I receptor kinase inhibitor. Taken together, the present data suggested that tumor-derived secreted GRP78 elicited the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) to CAFs through activating TGF-β/Smad signaling pathway, which may represent a novel mechanism for transition of BMSCs to CAFs and a hitherto unknown function of GRP78 in the tumor microenvironment.
PLOS ONE | 2014
Xiaoting Jin; Li Song; Xiangyuan Liu; Meilan Chen; Zhuoyu Li; Long Cheng; Hua Ren
Dichlorodiphenoxytrichloroethane (DDT) is a known persistent organic pollutant and liver damage toxicant. However, there has been little emphasis on the mechanism underlying liver damage toxicity of DDT and the relevant effective inhibitors. Hence, the present study was conducted to explore the protective effects of vitamin C (VC) and vitamin E (VE) on the cytotoxicity of DDT in HL-7702 cells and elaborate the specific molecular mechanisms. The results demonstrated that p,p′-DDT exposure at over 10 µM depleted cell viability of HL-7702 cells and led to cell apoptotic. p,p′-DDT treatment elevated the level of reactive oxygen species (ROS) generation, induced mitochondrial membrane potential, and released cytochrome c into the cytosol, with subsequent elevations of Bax and p53, along with suppression of Bcl-2. In addition, the activations of caspase-3 and -8 were triggered. Furthermore, p,p′-DDT promoted the expressions of NF-κB and FasL. When the cells were exposed to the NF-κB inhibitor (PDTC), the up-regulated expression of FasL was attenuated. Strikingly, these alterations caused by DDT treatment were prevented or reversed by the addition of VC or VE, and the protective effects of co-treatment with VC and VE were higher than the single supplement with p,p′-DDT. Taken together, these findings provide novel experimental evidences supporting that VC or/and VE could reduce p,p′-DDT-induced cytotoxicity of HL-7702 cells via the ROS-mediated mitochondrial pathway and NF-κB/FasL pathway.
Cellular Signalling | 2014
Haili Wu; Zongwei Li; Peng Yang; Lichao Zhang; Yongsheng Fan; Zhuoyu Li
The metabolic activity in cancer cells primarily rely on aerobic glycolysis. Besides glycolysis, some tumor cells also exhibit excessive addition to glutamine, which constitutes an advantage for tumor growth. M2-type pyruvate kinase (PKM2) plays a pivotal role in sustaining aerobic glycolysis, pentose phosphate pathway and serine synthesis pathway. However, the participation of PKM2 in glutaminolysis is little to be known. Here we demonstrated that PKM2 depletion could provoke glutamine metabolism by enhancing the β-catenin signaling pathway and consequently promoting its downstream c-Myc-mediated glutamine metabolism in colon cancer cells. Treatment with 2-deoxy-d-glucose (2-DG), a glycolytic inhibitor, got consistent results with the above. In addition, the dimeric form of PKM2, which lacks the pyruvate kinase activities, plays a critical role in regulating β-catenin. Moreover, we found that overexpression of PKM2 negatively regulated β-catenin through miR-200a. These insights supply evidence that glutaminolysis plays a compensatory role for cell survival upon glucose metabolism impaired.