Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zi-Guo Yuan is active.

Publication


Featured researches published by Zi-Guo Yuan.


Vaccine | 2011

Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18.

Zi-Guo Yuan; Xiu-Xiang Zhang; Rui-Qing Lin; Eskild Petersen; Shenyi He; Miao Yu; Xian-Hui He; Dong-Hui Zhou; Yong He; Hao-Xin Li; Ming Liao; Xing-Quan Zhu

Toxoplasma gondii is an obligate intracellular protozoan parasite infecting mammals and birds including humans. Rhoptry protein 18 has been implicated as an important virulence factor. In this study, we constructed a DNA vaccine expressing rhoptry protein 18 (ROP18) of T. gondii, and evaluated the immune response and protective immunity in Kunming mice. The gene sequence encoding ROP18 was inserted into the eukaryotic expression vector pVAX I. Intramuscular immunization of mice with pVAX-ROP18 elicited specific humoral responses and stimulated lymphoproliferation (P<0.05). The cellular immune response was associated with the production of IFN-γ, indicating that a Th1 type response was elicited, which was confirmed by the production of large amounts of IgG2a (P<0.05). By the expression of the CD69, an activation marker of CD4+ and CD8+ T cells, we found that pVAX-ROP18 enhanced the activation of CD4+ and CD8+ T cells in lymphoid in mice. After lethal challenge, the mice immunized with the pVAX-ROP18 showed a significantly increased survival time (27.9±15.1 days) compared with control mice which died within 7 days of challenge (P<0.05). Our results show for the first time, that a ROP18 vaccine construct can enhance the T. gondii-specific CTL. Th1 responses and increased survival suggested that ROP18 is a promising vaccine candidate against infection with T. gondii.


Vaccine | 2009

Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice

Gao-Hui Peng; Zi-Guo Yuan; Dong-Hui Zhou; Xian-Hui He; Miao-Miao Liu; Chao Yan; Chuang-Cheng Yin; Yong He; Rui-Qing Lin; Xing-Quan Zhu

Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. Microneme proteins which are responsible for adhesion and invasion have been implicated as vaccine candidates. In this study, we constructed a DNA vaccine expressing microneme protein 6 (MIC6) of T. gondii, and evaluated the immune response it induced in Kunming mice. The gene sequence encoding MIC6 was inserted into the eukaryotic expression vector pVAXI. We immunized Kunming mice intramuscularly. After immunization, we evaluated the immune response using lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged lethally. The results showed that the group immunized with pVAX-MIC6 developed a high level of specific antibody responses against T. gondii lysate antigen (TLA), a strong lymphoproliferative response, and significant levels of IFN-gamma, IL-2, IL-4 and IL-10 production, compared with the other groups immunized with empty plasmid or phosphate-buffered saline, respectively. These results demonstrate that pVAX-MIC6 induces significant humoral and cellular Th1 immune responses. After lethal challenge, the mice immunized with the pVAX-MIC6 showed an increased survival time (13.3+/-1.2 days) compared with control mice died within 7 days of challenge. Our data demonstrate, for the first time, that MIC6 triggered a strong humoral and cellular response against T. gondii, and that the antigen is a potential vaccine candidate against toxoplasmosis, worth further development.


Parasites & Vectors | 2011

Seroprevalence of Toxoplasma gondii infection in pet dogs in Lanzhou, Northwest China

Song-Ming Wu; Si-Yang Huang; Bao-Quan Fu; Guang-Yuan Liu; Jia-Xu Chen; Mu-Xin Chen; Zi-Guo Yuan; Dong-Hui Zhou; Ya-Biao Weng; Xing-Quan Zhu; De-He Ye

BackgroundIn recent years, surveys of Toxoplasma gondii infection in dogs have been reported worldwide, including China. However, little is known about the prevalence of T. gondii in pet dogs in Northwest China. In the present study, the prevalence of T. gondii in pet dogs in Lanzhou, China was investigated using the modified agglutination test (MAT).ResultsIn this survey, antibodies to T. gondii were found in 28 of 259 (10.81%) pet dogs, with MAT titers of 1:20 in 14 dogs, 1:40 in nine, 1:80 in four, and 1:160 or higher in one dog. The prevalence ranged from 6.67% to 16.67% among dogs of different ages, with low rates in young pet dogs, and high rates in older pet dogs. The seroprevalence in dogs >3 years old was higher than that in dogs ≤1 years old, but the difference was not statistically significant (P > 0.05). The seroprevalence in male dogs was 12.50% (17 of 136), and in female dogs it was 8.94% (11 of 123), but the difference was not statistically significant (P > 0.05).ConclusionsA high prevalence of T. gondii infection was found in pet dogs in Lanzhou, Northwest China, which has implications for public health in this region. In order to reduce the risk of exposure to T. gondii, further measures and essential control strategies should be carried out rationally in this region.


Clinical and Vaccine Immunology | 2011

Protective Immunity Induced by Toxoplasma gondii Rhoptry Protein 16 against Toxoplasmosis in Mice

Zi-Guo Yuan; Xiu-Xiang Zhang; Xian-Hui He; Eskild Petersen; Dong-Hui Zhou; Yong He; Rui-Qing Lin; Xiu-Zhen Li; Xu-Li Chen; Xiao-Ru Shi; Xiu-Ling Zhong; Bing Zhang; Xing-Quan Zhu

ABSTRACT Toxoplasma gondii can infect a large variety of domestic and wild animals and human beings, sometimes causing severe pathology. Rhoptries are involved in T. gondii invasion and host cell interaction and have been implicated as important virulence factors. In this study, we constructed a DNA vaccine expressing rhoptry protein 16 (ROP16) of T. gondii and evaluated the immune responses it induced in Kunming mice. The gene sequence encoding ROP16 was inserted into the eukaryotic expression vector pVAX I. We immunized Kunming mice intramuscularly. After immunization, we evaluated the immune response using a lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged lethally. The results showed that mice immunized with pVAX-ROP16 developed a high level of specific antibody responses against T. gondii ROP16 expressed in Escherichia coli, a strong lymphoproliferative response, and significant levels of gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-4, and IL-10 production compared with results for other mice immunized with either empty plasmid or phosphate-buffered saline, respectively. The results showed that pVAX-ROP16 induces significant humoral and cellular Th1 immune responses. After lethal challenge, the mice immunized with pVAX-ROP16 showed a significantly (P < 0.05) prolonged survival time (21.6 ± 9.9 days) compared with control mice, which died within 7 days of challenge. Our data demonstrate, for the first time, that ROP16 triggers a strong humoral and cellular response against T. gondii and that ROP16 is a promising vaccine candidate against toxoplasmosis, worth further development.


Vaccine | 2012

Ascaris suum enolase is a potential vaccine candidate against ascariasis.

Ning Chen; Zi-Guo Yuan; Min-Jun Xu; Dong-Hui Zhou; Xiu-Xiang Zhang; Yan-Zhong Zhang; Xiao-Wei Wang; Chao Yan; Rui-Qing Lin; Xing-Quan Zhu

Ascariasis caused by Ascaris is the most common parasite problem in humans and pigs worldwide. No vaccines are available for the prevention of Ascaris infections. In the present study, the gene encoding Ascaris suum enolase (As-enol-1) was amplified, cloned and sequenced. Amino acid sequence alignment indicated that As-enol-1 was highly conserved between different nematodes and shared the highest identity (87%) with enolase from Anisakis simplex s.l. The recombinant pVAX-Enol was successfully expressed in Marc-145 cells. The ability of the pVAX-Enol for inducing immune protective responses against challenge infection with A. suum L3 was evaluated in Kunming mice. The immune response was evaluated by lymphoproliferative assay, cytokine and antibody measurements, and the reduction rate of recovery larvae. The results showed that the mice immunized with pVAX-Enol developed a high level of specific antibody responses against A. suum, a strong lymphoproliferative response, and significant levels of IFN-γ, IL-2, IL-4 and IL-10 production, compared with the other groups immunized with empty plasmid or blank controls, respectively. There was a 61.13% reduction (P<0.05) in larvae recovery compared with that in the blank control group. Our data indicated that A. suum enolase is a potential vaccine candidate against A. suum infection.


Gene | 2011

Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens.

Rui-Qing Lin; Li-Ling Qiu; Liu Gh; Xiangyun Wu; Ya-Biao Weng; Wen-Qin Xie; Jie Hou; Hong Pan; Zi-Guo Yuan; Feng-Cai Zou; Min Hu; Xing-Quan Zhu

Chicken coccidiosis caused by members of the genus Eimeria causes significant economic losses worldwide. In the present study we sequenced the complete mitochondrial DNA (mtDNA) sequences of six Eimeria species and analyzed features of their gene contents and genome organizations. The complete mt genomes of E. acervulina, E. brunetti, E. maxima, E. necatrix, E. tenella and E. praecox were 6179bp, 6148bp, 6169bp, 6214bp, 6213bp and 6174bp in size, respectively. All of the mt genomes consist of 3 genes for proteins (cox1, cox3, and cytb), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA genes. The organization of the mt genomes is similar to that of Plasmodium, but distinct from Babesia and Theileria. The putative direction of translation for 3 genes (cox1, cox3, and cytb) was the same in all six Eimeria species. The contents of A+T of the mt genomes were 65.35% for E. acervulina, 65.43% for E. brunetti, 64.53% for E. maxima, 65.04% for E. necatrix, 64.98% for E. tenella and 65.59% for E. praecox. The AT bias has a significant effect on both the codon usage pattern and amino acid composition of proteins. Phylogenetic analyses using concatenated nucleotide sequences of the 2 protein-coding genes (cytb and cox1), with three different computational algorithms (Bayesian analysis, maximum parsimony and maximum likelihood), all revealed distinct groups with high statistical support, indicating that the six Eimeria spp. represent six distinct but closely-related species. These data provide novel mtDNA markers for studying the molecular epidemiology and population genetics of the six Eimeria spp., and should have implications for the molecular diagnosis, prevention and control of coccidiosis in domestic chickens.


Vaccine | 2013

Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasma gondii against acute toxoplasmosis in mice.

Jia Chen; Si-Yang Huang; Zhong-Yuan Li; Zi-Guo Yuan; Dong-Hui Zhou; Eskild Petersen; Nian-Zhang Zhang; Xing-Quan Zhu

Toxoplasma gondii is an obligate intracellular protozoan parasite infecting humans, mammals and birds. Eukaryotic translation initiation factor (eIF4A) is a newly identified protein associated with tachyzoite virulence. To evaluate the protective efficacy of T. gondii eIF4A, a DNA vaccine (pVAX-eIF4A) encoding T. gondii eIF4A (Tg-eIF4A) gene was constructed. The expression ability of this recombinant DNA plasmid was examined in Marc145 cells by IFA. Then, Kunming mice were intramuscularly immunized with pVAX-eIF4A and followed by challenge infection with the highly virulent T. gondii RH strain. The results showed that vaccination with pVAX-eIF4A elicited specific humoral responses, with high IgG antibody titers and specific lymphocyte proliferative responses. The cellular immune response was associated with significant production of IFN-γ, IL-2 in Kunming mice, and a mixed IgG1/IgG2a response with predominance of IgG2a production, indicating that a Th1 type response was elicited after immunization with pVAX-eIF4A. In addition, the increase of the percentage of CD8+ T cells in lymphoid in mice suggested the activation of MHC class I restricted antigen presentation pathways. After lethal challenge, the mice vaccinated with the pVAX-eIF4A showed a significantly prolonged survival time (23.0±5.5 days) compared with control mice which died within 7 days of challenge (P<0.05). These results demonstrate that pVAX-eIF4A could elicit strong humoral, Th1-type cellular immune responses and increase survival time of immunized mice, suggesting that eIF4A is a promising vaccine candidate against acute T. gondii infection in mice.


Journal of Helminthology | 2012

Sequence variability in two mitochondrial DNA regions and internal transcribed spacer among three cestodes infecting animals and humans from China.

R.S. Dai; Guo-Hua Liu; Hui-Qun Song; Rui-Qing Lin; Zi-Guo Yuan; Ming-Wei Li; Si-Yang Huang; W. Liu; Xing-Quan Zhu

Sequence variability in two mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 4 (nad4), and internal transcribed spacer (ITS) of rDNA among and within three cestodes, Spirometra erinaceieuropaei, Taenia multiceps and Taenia hydatigena, from different geographical origins in China was examined. A portion of the cox1 (pcox1), nad4 genes (pnad4) and the ITS (ITS1+5.8S rDNA+ITS2) were amplified separately from individual cestodes by polymerase chain reaction (PCR). Representative amplicons were subjected to sequencing in order to estimate sequence variability. While the intra-specific sequence variations within each of the tapeworm species were 0-0.7% for pcox1, 0-1.7% for pnad4 and 0.1-3.6% for ITS, the inter-specific sequence differences were significantly higher, being 12.1-17.6%, 18.7-26.2% and 31-75.5% for pcox1, pnad4 and ITS, respectively. Phylogenetic analyses based on the pcox1 sequence data revealed that T. multiceps and T. hydatigena were more closely related to the other members of the Taenia genus, and S. erinaceieuropaei was more closely related to the other members of the Spirometra genus. These findings demonstrated clearly the usefulness of mtDNA and rDNA sequences for population genetic studies of these cestodes of socio-economic importance.


PLOS ONE | 2011

The Complete Mitochondrial Genome of the Asiatic Cavity-Nesting Honeybee Apis cerana (Hymenoptera: Apidae)

Hong-Wei Tan; Guo-Hua Liu; Xia Dong; Rui-Qing Lin; H. Q. Song; Si-Yang Huang; Zi-Guo Yuan; Guang-Hui Zhao; Xing-Quan Zhu

In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Apis cerana, the Asiatic cavity-nesting honeybee. We present here an analysis of features of its gene content and genome organization in comparison with Apis mellifera to assess the variation within the genus Apis and among main groups of Hymenoptera. The size of the entire mt genome of A. cerana is 15,895 bp, containing 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes and one control region. These genes are transcribed from both strands and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 83.96% for A. cerana. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. There are a total of 3672 codons in all 13 protein-coding genes, excluding termination codons. The most frequently used amino acid is Leu (15.52%), followed by Ile (12.85%), Phe (10.10%), Ser (9.15%) and Met (8.96%). Intergenic regions in the mt genome of A. cerana are 705 bp in total. The order and orientation of the gene arrangement pattern is identical to that of A. mellifera, except for the position of the tRNA-Ser(AGN) gene. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes, with three different computational algorithms (NJ, MP and ML), all revealed two distinct groups with high statistical support, indicating that A. cerana and A. mellifera are two separate species, consistent with results of previous morphological and molecular studies. The complete mtDNA sequence of A. cerana provides additional genetic markers for studying population genetics, systematics and phylogeographics of honeybees.


Experimental Parasitology | 2011

Ascaris suum: RNAi mediated silencing of enolase gene expression in infective larvae.

Ning Chen; Min-Jun Xu; Alasdair J. Nisbet; Cuiqin Huang; Rui-Qing Lin; Zi-Guo Yuan; Hui-Qun Song; Xing-Quan Zhu

Ascaris suum is an important parasite of pigs that causes tremendous economic losses globally to agriculture and animal husbandry annually. RNA interference (RNAi) technology has been described as a successful and useful approach for the elucidation of gene function in parasitic nematodes. In the present study, RNAi was used to silence the expression of a gene encoding enolase in A. suum by soaking infective larvae in double-stranded RNA derived from an EST (representing As-enol-1) selected from an A. suum infective larvae-specific cDNA library. The mRNA levels of RNAi-treated larvae were examined by Reverse-Transcription PCR (RT-PCR) analysis. The survival of RNAi-treated larvae was compared with larvae treated with dsRNA-free culture medium. The effect of enolase depletion on the development of A. suum larvae was assessed by infecting BALB/c mice with RNAi-treated larvae. The results showed that enolase gene expression was silenced completely and the survival rate of the RNAi-treated nematodes was reduced by 20.11% (P<0.01) after soaking for 72 h. Although no significant difference was detected in the numbers of larvae recovered from the liver and lungs of infected mice 4 days post infection, RNAi knockdown of the A. suum enolase mRNA led to significant shorter larvae, indicating that loss of enolase expression may cause delays in larval development.

Collaboration


Dive into the Zi-Guo Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui-Qing Lin

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dong-Hui Zhou

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui-Qun Song

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya-Biao Weng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Feng-Cai Zou

Yunnan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chao Yan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Juan Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

R. Q. Lin

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge