Zi Huang
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zi Huang.
international joint conference on artificial intelligence | 2011
Yi Yang; Heng Tao Shen; Zhigang Ma; Zi Huang; Xiaofang Zhou
Compared with supervised learning for feature selection, it is much more difficult to select the discriminative features in unsupervised learning due to the lack of label information. Traditional unsupervised feature selection algorithms usually select the features which best preserve the data distribution, e.g., manifold structure, of the whole feature set. Under the assumption that the class label of input data can be predicted by a linear classifier, we incorporate discriminative analysis and l2,1-norm minimization into a joint framework for unsupervised feature selection. Different from existing unsupervised feature selection algorithms, our algorithm selects the most discriminative feature subset from the whole feature set in batch mode. Extensive experiment on different data types demonstrates the effectiveness of our algorithm.
acm multimedia | 2011
Jingkuan Song; Yi Yang; Zi Huang; Heng Tao Shen
Near-duplicate video retrieval (NDVR) has recently attracted lots of research attention due to the exponential growth of online videos. It helps in many areas, such as copyright protection, video tagging, online video usage monitoring, etc. Most of existing approaches use only a single feature to represent a video for NDVR. However, a single feature is often insufficient to characterize the video content. Besides, while the accuracy is the main concern in previous literatures, the scalability of NDVR algorithms for large scale video datasets has been rarely addressed. In this paper, we present a novel approach - Multiple Feature Hashing (MFH) to tackle both the accuracy and the scalability issues of NDVR. MFH preserves the local structure information of each individual feature and also globally consider the local structures for all the features to learn a group of hash functions which map the video keyframes into the Hamming space and generate a series of binary codes to represent the video dataset. We evaluate our approach on a public video dataset and a large scale video dataset consisting of 132,647 videos, which was collected from YouTube by ourselves. The experiment results show that the proposed method outperforms the state-of-the-art techniques in both accuracy and efficiency.
IEEE Transactions on Image Processing | 2014
Xiaofeng Zhu; Lei Zhang; Zi Huang
Hashing is becoming increasingly important in large-scale image retrieval for fast approximate similarity search and efficient data storage. Many popular hashing methods aim to preserve the kNN graph of high dimensional data points in the low dimensional manifold space, which is, however, difficult to achieve when the number of samples is big. In this paper, we propose an effective and efficient hashing approach by sparsely embedding a sample in the training sample space and encoding the sparse embedding vector over a learned dictionary. To this end, we partition the sample space into clusters via a linear spectral clustering method, and then represent each sample as a sparse vector of normalized probabilities that it falls into its several closest clusters. This actually embeds each sample sparsely in the sample space. The sparse embedding vector is employed as the feature of each sample for hashing. We then propose a least variance encoding model, which learns a dictionary to encode the sparse embedding feature, and consequently binarize the coding coefficients as the hash codes. The dictionary and the binarization threshold are jointly optimized in our model. Experimental results on benchmark data sets demonstrated the effectiveness of the proposed approach in comparison with state-of-the-art methods.
IEEE Transactions on Multimedia | 2013
Yi Yang; Jingkuan Song; Zi Huang; Zhigang Ma; Nicu Sebe; Alexander G. Hauptmann
Multimedia data are usually represented by multiple features. In this paper, we propose a new algorithm, namely Multi-feature Learning via Hierarchical Regression for multimedia semantics understanding, where two issues are considered. First, labeling large amount of training data is labor-intensive. It is meaningful to effectively leverage unlabeled data to facilitate multimedia semantics understanding. Second, given that multimedia data can be represented by multiple features, it is advantageous to develop an algorithm which combines evidence obtained from different features to infer reliable multimedia semantic concept classifiers. We design a hierarchical regression model to exploit the information derived from each type of feature, which is then collaboratively fused to obtain a multimedia semantic concept classifier. Both label information and data distribution of different features representing multimedia data are considered. The algorithm can be applied to a wide range of multimedia applications and experiments are conducted on video data for video concept annotation and action recognition. Using Trecvid and CareMedia video datasets, the experimental results show that it is beneficial to combine multiple features. The performance of the proposed algorithm is remarkable when only a small amount of labeled training data are available.
computer vision and pattern recognition | 2011
Yang Yang; Yi Yang; Zi Huang; Heng Tao Shen; Feiping Nie
Nowadays numerous social images have been emerging on the Web. How to precisely label these images is critical to image retrieval. However, traditional image-level tagging methods may become less effective because global image matching approaches can hardly cope with the diversity and arbitrariness of Web image content. This raises an urgent need for the fine-grained tagging schemes. In this work, we study how to establish mapping between tags and image regions, i.e. localize tags to image regions, so as to better depict and index the content of images. We propose the spatial group sparse coding (SGSC) by extending the robust encoding ability of group sparse coding with spatial correlations among training regions. We present spatial correlations in a two-dimensional image space and design group-specific spatial kernels to produce a more interpretable regularizer. Further we propose a joint version of the SGSC model which is able to simultaneously encode a group of intrinsically related regions within a test image. An effective algorithm is developed to optimize the objective function of the Joint SGSC. The tag localization task is conducted by propagating tags from sparsely selected groups of regions to the target regions according to the reconstruction coefficients. Extensive experiments on three public image datasets illustrate that our proposed models achieve great performance improvements over the state-of-the-art method in the tag localization task.
IEEE Transactions on Multimedia | 2013
Jingkuan Song; Yi Yang; Zi Huang; Heng Tao Shen; Jiebo Luo
Near-duplicate video retrieval (NDVR) has recently attracted much research attention due to the exponential growth of online videos. It has many applications, such as copyright protection, automatic video tagging and online video monitoring. Many existing approaches use only a single feature to represent a video for NDVR. However, a single feature is often insufficient to characterize the video content. Moreover, while the accuracy is the main concern in previous literatures, the scalability of NDVR algorithms for large scale video datasets has been rarely addressed. In this paper, we present a novel approach-Multiple Feature Hashing (MFH) to tackle both the accuracy and the scalability issues of NDVR. MFH preserves the local structural information of each individual feature and also globally considers the local structures for all the features to learn a group of hash functions to map the video keyframes into the Hamming space and generate a series of binary codes to represent the video dataset. We evaluate our approach on a public video dataset and a large scale video dataset consisting of 132,647 videos collected from YouTube by ourselves. This dataset has been released (http://itee.uq.edu.au/shenht/UQ_VIDEO/). The experimental results show that the proposed method outperforms the state-of-the-art techniques in both accuracy and efficiency.
Pattern Recognition | 2012
Xiaofeng Zhu; Zi Huang; Heng Tao Shen; Jian Cheng; Changsheng Xu
In this paper, we propose a novel method named Mixed Kernel CCA (MKCCA) to achieve easy yet accurate implementation of dimensionality reduction. MKCCA consists of two major steps. First, the high dimensional data space is mapped into the reproducing kernel Hilbert space (RKHS) rather than the Hilbert space, with a mixture of kernels, i.e. a linear combination between a local kernel and a global kernel. Meanwhile, a uniform design for experiments with mixtures is also introduced for model selection. Second, in the new RKHS, Kernel CCA is further improved by performing Principal Component Analysis (PCA) followed by CCA for effective dimensionality reduction. We prove that MKCCA can actually be decomposed into two separate components, i.e. PCA and CCA, which can be used to better remove noises and tackle the issue of trivial learning existing in CCA or traditional Kernel CCA. After this, the proposed MKCCA can be implemented in multiple types of learning, such as multi-view learning, supervised learning, semi-supervised learning, and transfer learning, with the reduced data. We show its superiority over existing methods in different types of learning by extensive experimental results.
ACM Transactions on Information Systems | 2013
Xiaofeng Zhu; Zi Huang; Hong Cheng; Jiangtao Cui; Heng Tao Shen
Hash-based methods achieve fast similarity search by representing high-dimensional data with compact binary codes. However, both generating binary codes and encoding unseen data effectively and efficiently remain very challenging tasks. In this article, we focus on these tasks to implement approximate similarity search by proposing a novel hash based method named sparse hashing (SH for short). To generate interpretable (or semantically meaningful) binary codes, the proposed SH first converts original data into low-dimensional data through a novel nonnegative sparse coding method. SH then converts the low-dimensional data into Hamming space (i.e., binary encoding low-dimensional data) by a new binarization rule. After this, training data are represented by generated binary codes. To efficiently and effectively encode unseen data, SH learns hash functions by taking a-priori knowledge into account, such as implicit group effect of the features in training data, and the correlations between original space and the learned Hamming space. SH is able to perform fast approximate similarity search by efficient bit XOR operations in the memory of a modern PC with short binary code representations. Experimental results show that the proposed SH significantly outperforms state-of-the-art techniques.
ACM Computing Surveys | 2013
Jiajun Liu; Zi Huang; Hongyun Cai; Heng Tao Shen; Chong-Wah Ngo; Wei Wang
The exponential growth of online videos, along with increasing user involvement in video-related activities, has been observed as a constant phenomenon during the last decade. Users time spent on video capturing, editing, uploading, searching, and viewing has boosted to an unprecedented level. The massive publishing and sharing of videos has given rise to the existence of an already large amount of near-duplicate content. This imposes urgent demands on near-duplicate video retrieval as a key role in novel tasks such as video search, video copyright protection, video recommendation, and many more. Driven by its significance, near-duplicate video retrieval has recently attracted a lot of attention. As discovered in recent works, latest improvements and progress in near-duplicate video retrieval, as well as related topics including low-level feature extraction, signature generation, and high-dimensional indexing, are employed to assist the process. As we survey the works in near-duplicate video retrieval, we comparatively investigate existing variants of the definition of near-duplicate video, describe a generic framework, summarize state-of-the-art practices, and explore the emerging trends in this research topic.
ACM Transactions on Information Systems | 2009
Zi Huang; Heng Tao Shen; Jie Shao; Xiaofang Zhou; Bin Cui
Recently, video clips have become very popular online. The massive influx of video clips has created an urgent need for video search engines to facilitate retrieving relevant clips. Different from traditional long videos, a video clip is a short video often expressing a moment of significance. Due to the high complexity of video data, efficient video clip search from large databases turns out to be very challenging. We propose a novel video clip representation model called the Bounded Coordinate System (BCS), which is the first single representative capturing the dominating content and content—changing trends of a video clip. It summarizes a video clip by a coordinate system, where each of its coordinate axes is identified by principal component analysis (PCA) and bounded by the range of data projections along the axis. The similarity measure of BCS considers the operations of translation, rotation, and scaling for coordinate system matching. Particularly, rotation and scaling reflect the difference of content tendencies. Compared with the quadratic time complexity of existing methods, the time complexity of measuring BCS similarity is linear. The compact video representation together with its linear similarity measure makes real-time search from video clip collections feasible. To further improve the retrieval efficiency for large video databases, a two-dimensional transformation method called Bidistance Transformation (BDT) is introduced to utilize a pair of optimal reference points with respect to bidirectional axes in BCS. Our extensive performance study on a large database of more than 30,000 video clips demonstrates that BCS achieves very high search accuracy according to human judgment. This indicates that content tendencies are important in determining the meanings of video clips and confirms that BCS can capture the inherent moment of video clip to some extent that better resembles human perception. In addition, BDT outperforms existing indexing methods greatly. Integration of the BCS model and BDT indexing can achieve real-time search from large video clip databases.
Collaboration
Dive into the Zi Huang's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs