Zi- Zheng
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zi- Zheng.
Science | 2013
Jason S. McLellan; Man Chen; Sherman Leung; Kevin W. Graepel; Xiulian Du; Yongping Yang; Tongqing Zhou; Ulrich Baxa; Etsuko Yasuda; Tim Beaumont; Azad Kumar; Kayvon Modjarrad; Zi-Zheng Zheng; Min Zhao; Ningshao Xia; Peter D. Kwong; Barney S. Graham
Building Better Vaccines Vaccines are one of the most effective tools to protect against infectious diseases. Unfortunately, vaccines for diseases with the highest global health burdens, such as HIV, malaria, and tuberculosis, are not yet available. Koff et al. (p. 1064) review the latest advances in vaccine development and why these particular diseases remain such a challenge. Respiratory syncytial virus (RSV) is a serious cause of morbidity and mortality in infants and young children worldwide. Although a prophylactic antibody is available for children at high risk, a vaccine is much needed. As a potential step toward this goal, McLellan et al. (p. 1113, published online 25 April) solved the cocrystal structure of a neutralizing antibody (D25) bound to the prefusion F protein of RSV. Knowledge of the structure of the prefusion protein should help to guide vaccine design and the development of additional therapeutics. The prefusion conformation of respiratory syncytial virus protein F has been trapped by a neutralizing antibody. The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site Ø. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.
Science | 2013
Jason S. McLellan; Man Chen; M. Gordon Joyce; Mallika Sastry; Guillaume Stewart-Jones; Yongping Yang; Baoshan Zhang; Lei Chen; Sanjay Srivatsan; Anqi Zheng; Tongqing Zhou; Kevin W. Graepel; Azad Kumar; Syed M. Moin; Jeffrey C. Boyington; Gwo Yu Chuang; Cinque Soto; Ulrich Baxa; Arjen Q. Bakker; Hergen Spits; Tim Beaumont; Zi-Zheng Zheng; Ningshao Xia; Sung Youl Ko; John Paul Todd; Srinivas S. Rao; Barney S. Graham; Peter D. Kwong
Designer Vaccine Respiratory syncytial virus (RSV) is one of the last remaining childhood diseases without an approved vaccine. Using a structure-based approach, McLellan et al. (p. 592) designed over 150 fusion glycoprotein variants, assessed their antibody reactivity, determined crystal structures of stabilized variants, and measured their ability to elicit protective responses. This approach yielded an immunogen that elicits higher protective responses than the postfusion form of the fusion glycoprotein, which is one of the current leading RSV vaccine candidates entering clinical trials. Importantly, highly protective responses were elicited in both mice and macaques. Molecular engineering of a childhood virus surface protein significantly improves protective responses in mice and macaques. Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site Ø, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site Ø when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site Ø–stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.
Journal of General Virology | 2010
Zi-Zheng Zheng; Ji Miao; Min Zhao; Ming Tang; Anthony E. T. Yeo; Hai Yu; Jun Zhang; Ningshao Xia
p239 is a virus-like particle constituted from hepatitis E virus (HEV) recombinant proteins. It can be used as a surrogate for HEV and as an investigative tool to study cellular interactions because of its ability to adsorb to and penetrate HepG2 cellular membranes. Our objective was to use p239 to define the role of HEV capsid proteins during the early stages of infection. Pull-down and MALDI-TOF MS experiments identified three host-cell proteins, Grp 78/Bip, alpha-tubulin and heat-shock protein 90 (HSP90), and the latter was investigated further. Antibodies to p239 alone or HSP90 alone could detect p239 or HSP90, suggesting the formation of a complex between p239 and HSP90. In the HepG2 cell, geldanamycin (GA), an HSP90-specific inhibitor, blocked intracellular transportation of p239, but had no effect on the binding and cellular entry of p239, suggesting that HSP90 was important for HEV capsid intracellular transportation. RT-PCR results showed that the efficiency of wild-type HEV infection was inhibited significantly by GA treatment, suggesting the importance of HSP90 in virus infectivity. It was concluded that HSP90 plays a crucial role in the intracellular transportation of viral capsids in the early stage of HEV infection.
Journal of Molecular Modeling | 2011
Hai Yu; Shaowei Li; Chunyan Yang; Minxi Wei; Cuiling Song; Zi-Zheng Zheng; Ying Gu; Hailian Du; Jun Zhang; Ningshao Xia
P239, a truncated construct of the hepatitis E virus (HEV) ORF2 protein, has been proven able to bind with a chaperone, Grp78, in both an in vitro co-immune precipitation test and an in vivo cell model. We previously solved the crystal structure of E2s—the C-terminal domain of p239 involved in host interactions. In the present study, we built a 3D structure of Grp78 using homology modeling methods, and docked this molecule with E2s using the Zdockpro module of the InsightII software package. The modeled Grp78 structure was deemed feasible by profile 3D evaluation and molecular dynamic simulations. The docking result consists of six clusters of distinct complexes and C035 was selected as the most reasonable. The interacting interface of the predicted complex is comprised of the Grp78 linker region and nucleotide binding domain along with the E2s groove region and surrounding loops. Using energy, hydrogen bond and solvent accessible surface analyses, we identified a series of key residues that may be involved in the Grp78:E2s interaction. By comparing with the known structure of the Hsp70:J complex, we further concluded that the interaction of Grp78 and E2s could interrupt binding of Grp78 with the J domain, and in turn diminish or even eliminate the binding ability of the Grp78 substrate binding domain. The predicted series of key residues also provides clues for further research that should improve our understanding of the fundamental molecular mechanisms of HEV infection.
Journal of Clinical Microbiology | 2015
Gui-Ping Wen; Zi-Min Tang; Fan Yang; Ke Zhang; Wen-Fang Ji; Wei Cai; Shou-Jie Huang; Ting Wu; Jun Zhang; Zi-Zheng Zheng; Ningshao Xia
ABSTRACT Hepatitis E virus (HEV) is a serious public health problem. The commonly used tests that are specific for current HEV infection diagnosis include the detection of anti-HEV IgM and HEV RNA. Here, we report an improved enzyme-linked immunosorbent assay (ELISA) method for HEV antigen detection with a linear range equivalent to 6.3 × 103 to 9.2 × 105 RNA copies per ml. The monoclonal antibody (MAb) 12F12, a high-ability MAb that binds HEV virus, was selected as the capture antibody from a panel of 95 MAbs. The positive period of HEV antigenemia in infected monkeys using this test was, on average, 3 weeks longer than previously reported and covered the majority of the acute phase. The positive detection rates of IgM, RNA, and new antigen from the first serum samples collected from 16 confirmed acute hepatitis E patients were 81% (13/16), 81% (13/16), and 100% (16/16), respectively. In three patients, the initial serum specimens that tested negative for IgM, despite the presence of symptoms of acute hepatitis and elevated alanine aminotransferase (ALT) levels, were positive for HEV antigen and HEV RNA. In contrast, the serum samples of the three RNA-negative patients were antigen positive (and IgM positive), possibly due to the degradation of HEV nucleic acids. Our results suggest that this new antigen detection method has acceptable concordance with RNA detection and could serve as an important tool for diagnosing acute hepatitis E.
Vaccine | 2014
Minxi Wei; Xiao Zhang; Hai Yu; Zi-Min Tang; Kaihang Wang; Zhongyi Li; Zi-Zheng Zheng; Shaowei Li; Jun Zhang; Ningshao Xia; Qinjian Zhao
The protein encoded by ORF2 in hepatitis E virus (HEV) is the only capsid protein for this single-stranded RNA virus. It was previously shown that 148 aa (aa 459-606) was needed for dimer formation, whereas 239 aa (aa 368-606) was necessary to form virus-like particles (VLPs). The self-assembled VLPs of p239 were characterized with a series of methods including high performance size-exclusion chromatography to demonstrate the particulate nature of purified and properly refolded p239. A neutralizing and protective mouse monoclonal antibody (mAb) 8C11 was previously shown to bind three discontinuous peptide segments in the dimer. In addition to the good binding activity to recombinant dimeric form, E2s or E2, and VLP form p239, we demonstrated that 8C11 was able to capture the authentic HEV virions. The capability of virus capturing was demonstrated with a titration curve from 10(5) to 10(7) HEV genome copies, making binding activity to 8C11 a surrogate marker of virion-like epitopes on recombinant VLPs as well as vaccine efficacy in eliciting protective and neutralizing antibodies. Taken together, it was demonstrated that Escherichia coli expressed pORF2 proteins, p239 in particular, maintain the virion-like epitopes on VLP surface. This is consistent with the fact that p239 was demonstrated to be an effective prophylactic vaccine (recently licensed as Hecolin(®) in China) against HEV-induced hepatitis in a large scale clinical trial.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Pengfei Zhang; Yixin Chen; Yun Zeng; Chenguang Shen; Rui Li; Zhide Guo; Shaowei Li; Qingbing Zheng; Chengchao Chu; Zhantong Wang; Zi-Zheng Zheng; Rui Tian; Shengxiang Ge; Xianzhong Zhang; Ningshao Xia; Gang Liu; Xiaoyuan Chen
Significance The previously unidentified virus-mimetic nanovesicles (VMVs) described in this manuscript consist of phospholipid derived from mammalian cell plasma membrane, recombinant protein anchored to cell membrane via the route of signal peptide sorting, and surfactants capable of controlling the VMV size and strength, which allows the VMVs to display functional polypeptides or maintain the correct conformation of protein antigen. The protein integrated into VMV by its hydrophobic transmembrane peptide has more modifications, such as glycosylation, than proteins in conventional subunit vaccines. Moreover, many viral envelope glycoproteins can be genetically engineered onto VMV liposomal surface so as to mimic the properties and conformational epitopes of natural virus. VMV provides an effective, straightforward, and tunable approach against a wide range of emerging enveloped viruses. It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses.
Journal of Biological Chemistry | 2015
Min Zhao; Xiao-Jing Li; Zi-Min Tang; Fan Yang; Si-Ling Wang; Wei Cai; Ke Zhang; Ningshao Xia; Zi-Zheng Zheng
Background: The E2s domain of hepatitis E virus (HEV) capsid protein is the major target for antibody response. Results: Six antigenic sites of the E2s domain were identified by constructing, clustering, and characterizing a tool box containing representative anti-HEV monoclonal antibodies. Conclusion: The comprehensive functional epitopes of E2s domain were identified. Significance: This study provided a novel method for the comprehensive characterization of conformational antigenic domains. The hepatitis E virus (HEV) ORF2 encodes a single structural capsid protein. The E2s domain (amino acids 459–606) of the capsid protein has been identified as the major immune target. All identified neutralizing epitopes are located on this domain; however, a comprehensive characterization of antigenic sites on the domain is lacking due to its high degree of conformation dependence. Here, we used the statistical software SPSS to analyze cELISA (competitive ELISA) data to classify monoclonal antibodies (mAbs), which recognized conformational epitopes on E2s domain. Using this novel analysis method, we identified various conformational mAbs that recognized the E2s domain. These mAbs were distributed into 6 independent groups, suggesting the presence of at least 6 epitopes. Twelve representative mAbs covering the six groups were selected as a tool box to further map functional antigenic sites on the E2s domain. By combining functional and location information of the 12 representative mAbs, this study provided a complete picture of potential neutralizing epitope regions and immune-dominant determinants on E2s domain. One epitope region is located on top of the E2s domain close to the monomer interface; the other is located on the monomer side of the E2s dimer around the groove zone. Besides, two non-neutralizing epitopes were also identified on E2s domain that did not stimulate neutralizing antibodies. Our results help further the understanding of protective mechanisms induced by the HEV vaccine. Furthermore, the tool box with 12 representative mAbs will be useful for studying the HEV infection process.
Vaccine | 2015
Zi-Min Tang; Ming Tang; Min Zhao; Gui-Ping Wen; Fan Yang; Wei Cai; Si-Ling Wang; Zi-Zheng Zheng; Ningshao Xia
Hepatitis E virus (HEV) is a serious public health problem that causes acute hepatitis in humans and is primarily transmitted through fecal and oral routes. The major anti-HEV antibody responses are against conformational epitopes located in a.a. 459-606 of HEV pORF2. All reported neutralization epitopes are present on the dimer domain constructed by this peptide. While looking for a neutralizing monoclonal antibody (MAb)-recognized linear epitope, we found a novel neutralizing linear epitope (L2) located in a.a. 423-437 of pORF2. Moreover, epitope L2 is proved non-immunodominant in the HEV-infection process. Using the hepatitis B virus core protein (HBc) as a carrier to display this novel linear epitope, we show herein that this epitope could induce a neutralizing antibody response against HEV in mice and could protect rhesus monkeys from HEV infection. Collectively, our results showed a novel non-immunodominant linear neutralizing epitope of hepatitis E virus, which provided additional insight of HEV vaccine.
Science Translational Medicine | 2017
Chenguang Shen; Junyu Chen; Rui Li; Mengya Zhang; Guosong Wang; Svetlana Stegalkina; Limin Zhang; Jing Chen; Jian-Li Cao; Xingjian Bi; Stephen F. Anderson; Timothy Alefantis; Minwei Zhang; Xiaoyang Cai; Kunyu Yang; Qingbing Zheng; Mujing Fang; Hai Yu; Wenxin Luo; Zi-Zheng Zheng; Quan Yuan; Jun Zhang; James Wai-Kuo Shih; Harry Kleanthous; Honglin Chen; Yixin Chen; Ningshao Xia
A cross-lineage therapeutic antibody potently targets the receptor binding site of influenza B virus via multiple mechanisms. An antibody to battle flu B Although it circulates globally and is prevalent enough to warrant inclusion in the seasonal influenza vaccine, influenza B is far less well studied than its cousin, influenza A, and therapeutics are lacking. Shen et al. have now generated a potent antibody that inhibits diverse strains of influenza B virus. The antibody recognizes the receptor binding site in hemagglutinin, a region critical to viral entry, and was shown to be therapeutically effective in mice and ferrets. This antibody could be widely deployed to treat or prevent influenza B infection around the world. Influenza B virus causes considerable disease burden worldwide annually, highlighting the limitations of current influenza vaccines and antiviral drugs. In recent years, broadly neutralizing antibodies (bnAbs) against hemagglutinin (HA) have emerged as a new approach for combating influenza. We describe the generation and characterization of a chimeric monoclonal antibody, C12G6, that cross-neutralizes representative viruses spanning the 76 years of influenza B antigenic evolution since 1940, including viruses belonging to the Yamagata, Victoria, and earlier lineages. Notably, C12G6 exhibits broad cross-lineage hemagglutination inhibition activity against influenza B viruses and has higher potency and breadth of neutralization when compared to four previously reported influenza B bnAbs. In vivo, C12G6 confers stronger cross-protection against Yamagata and Victoria lineages of influenza B viruses in mice and ferrets than other bnAbs or the anti-influenza drug oseltamivir and has an additive antiviral effect when administered in combination with oseltamivir. Epitope mapping indicated that C12G6 targets a conserved epitope that overlaps with the receptor binding site in the HA region of influenza B virus, indicating why it neutralizes virus so potently. Mechanistic analyses revealed that C12G6 inhibits influenza B viruses via multiple mechanisms, including preventing viral entry, egress, and HA-mediated membrane fusion and triggering antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity responses. C12G6 is therefore a promising candidate for the development of prophylactics or therapeutics against influenza B infection and may inform the design of a truly universal influenza vaccine.