Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zibiao Zhong is active.

Publication


Featured researches published by Zibiao Zhong.


Journal of Materials Chemistry B | 2014

Novel fibers fabricated directly from chitin solution and their application as wound dressing

Yao Huang; Zibiao Zhong; Bo Duan; Zixuan Yang; Yanfeng Wang; Qifa Ye

For the first time, pure chitin fibers with relatively high strength, lustrous surface and circular cross section were spun directly from chitin solution dissolved in an NaOH-urea aqueous system with freezing. Subsequently, chitin nonwoven fabrics were constructed from the fresh wet fibers by hot pressing, and tested as wound dressings, showing excellent ability to accelerate healing, owing to the retainment of the intrinsic α-chitin structure.


Tumor Biology | 2015

miR-582-5p inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3

Yi Zhang; Wei Huang; Yan Ran; Yan Xiong; Zibiao Zhong; Xiaoli Fan; Zhenghua Wang; Qifa Ye

AbstractmicroRNAs play an important role in the progression of hepatocellular carcinoma (HCC). In this study, we found that miR-582-5p expression was downregulated in hepatoma tissues and HCC cell lines. Upregulation of miR-582-5p reduced colony number, inhibited cellular proliferation, and arrested cell cycle in G0/G1 phase. When miR-582-5p was inhibited, the colony number was increased and cellular proliferation and cell cycle were promoted. Further studies showed that miR-582-5p regulated the progression of HCC through directly inhibiting the expression of CDK1 and AKT3, and indirectly inhibiting the expression of cyclinD1.


Artificial Organs | 2016

Increased Expression of Aldehyde Dehydrogenase 2 Reduces Renal Cell Apoptosis During Ischemia/Reperfusion Injury After Hypothermic Machine Perfusion

Zibiao Zhong; Qianchao Hu; Zhen Fu; Ren Wang; Yan Xiong; Yang Zhang; Zhongzhong Liu; Yanfeng Wang; Qifa Ye

Hypothermic machine perfusion (MP) can reduce grafts injury after kidney transplantation; however, the mechanism has not been elucidated. In the past decade, many studies showed that aldehyde dehydrogenase 2 (ALDH2) is a protease which can inhibit cell apoptosis. Therefore, this study aims to explore whether ALDH2 takes part in reducing organ damage after MP. Eighteen healthy male New Zealand rabbits (12 weeks old, weight 3.0 ± 0.3 kg) were randomly divided into three groups: normal group, MP group, and cold storage (CS) group (n = 6). The left kidney of rabbits underwent warm ischemia for 35 min through clamping the left renal pedicle and then reperfusion for 1 h. Left kidneys were preserved by MP or CS (4°C for 4 h) in vivo followed by the right nephrectomy and 24-h reperfusion, and then the specimens and blood were collected. Finally, concentration of urine creatinine (Cr), blood urea nitrogen (BUN), and 4-HNE were tested. Renal apoptosis was detected by TUNEL staining, and the expression of ALDH2, cleaved-caspase 3, bcl-2/ bax, MAPK in renal tissue was detected by immunohistochemistry or Western blot; 24 h after surgery, the concentration of Cr in MP group was 355 ± 71μmol/L, in CS group was 511 ± 44 μmol/L (P < 0.05), while the BUN was 15.02 ± 2.34 mmol/L in MP group, 22.64 ± 3.58 mmol/L in CS group (P < 0.05). The rate of apoptosis and expression of cleaved caspase-3, p-P38, p-ERK, and p-JNK in MP group was significantly lower than that in CS group (P < 0.05), while expression of ALDH2 and bcl-2/bax in MP group was significantly higher than that in CS group (P < 0.05); expression of cleaved caspase-3 in both MP and CS group significantly increased as compared with that in normal group (P < 0.05). In conclusion, increased expression of ALDH2 can reduce the renal cell apoptosis through inhibiting MAPK pathway during ischemia/reperfusion injury (IRI) after hypothermic MP.


Experimental and Therapeutic Medicine | 2014

Gypenoside attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative and anti-apoptotic bioactivities

Jie Zhao; Yingzi Ming; Qiquan Wan; Shaojun Ye; Song Xie; Yi Zhu; Yanfeng Wang; Zibiao Zhong; Ling Li; Qifa Ye

Gynostemma pentaphyllum is a traditional Chinese medicine that has previously been used for the treatment of chronic inflammation, hyperlipidemia and liver disease. Gypenoside (GP), the predominant component of Gynostemma pentaphyllum, exhibits a therapeutic effect on chronic hepatic injury, fibrosis and fatty liver disease via its anti-inflammatory and anti-oxidant activity. However, the effect of GP on ischemia/reperfusion (I/R)-induced hepatic injury has, to the best of our knowledge, not previously been investigated. In the present study, a hepatic I/R-injury model was successfully established using C57BL/6 mice. In the treatment group, 50 mg/kg GP was administered orally 1 h prior to ischemia. Following hepatic I/R, the levels of hepatic lipid peroxidation and serum alanine aminotransferase increased, while the ratio of hepatic glutathione (GSH):oxidized GSH was reduced, which was effectively attenuated by pretreatment with GP. Furthermore, an increased protein expression of heme oxygenase-1 in the liver tissues of the I/R mice was attenuated by the administration of GP. In addition, the present study indicated that treatment with GP suppressed the I/R-induced increase in the pro-apoptotic protein levels of Bax and cytochrome c and the activity of caspase-3/8, as well as the I/R-induced decrease in the levels of anti-apoptotic protein Bcl-2. In conclusion, the present study indicated that GP effectively protected against I/R-induced hepatic injury via its anti-oxidative and anti-apoptotic bioactivity.


International Journal of Molecular Medicine | 2016

Hypothermic machine perfusion increases A20 expression which protects renal cells against ischemia/reperfusion injury by suppressing inflammation, apoptosis and necroptosis

Zixuan Yang; Zibiao Zhong; Mingxia Li; Yan Xiong; Yanfeng Wang; Guizhu Peng; Qifa Ye

There is an urgent need to improve the quality of donor organs obtained after cardiac death. In the present study, we examined the potential mechanisms through which A20 protects renal cells against ischemia/reperfusion injury (IRI) following either hypothermic machine perfusion (HMP) or static cold storage (CS) of the kidneys in a rabbit model. The expression of markers of apoptosis, necroptosis and inflammation in frozen kidney tissues were detected by western blot analysis, RT-qPCR and ELISA. Compared with the CS group, A20 expression was significantly higher in the tissue from the HMP group (P<0.01). By contrast, the expression of nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) was significantly lower in HMP group (P<0.01), whereas IκBα expression was significantly higher (P<0.01). The expression of apoptosis signal-regulating kinase 1 (ASK1), phosphorylated (p-)c-Jun N-terminal kinase (JNK) and activated caspase-3 in the HMP group was significantly downregulated compared with that in the CS group (all P<0.01). In addition, A20 inhibited receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis in the kidney. RIPK3 expression in the HMP group was significantly lower than that in the CS group (P<0.01), although the levels in both groups were higher than those in the sham group (P<0.01). Based on these findings, we propose a novel mechanism underlying the anti-apoptotic effect of A20 in renal cells in which A20 binds to ASK1 and promotes the degradation of ASK1 leading to the suppression of JNK activation and eventually, to the blockade of apoptosis. Thus, HMP reduces inflammation, apoptosis and necroptosis by upregulating the expression of A20; this mechanism may be responsible for protecting the kidney against IRI.


Carbohydrate Polymers | 2016

Homogeneous synthesis of quaternized chitin in NaOH/urea aqueous solution as a potential gene vector

Na Peng; Ziye Ai; Zehong Fang; Yanfeng Wang; Zhiping Xia; Zibiao Zhong; Xiaoli Fan; Qifa Ye

Water-soluble quaternized chitins (QCs) were homogeneously synthesized by reacting chitin with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) in 8wt% NaOH/4wt% urea aqueous solutions. The chemical structure and solution properties of the quaternized chitins were characterized by (1)H NMR, FT-IR, elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The results demonstrated that the water-soluble QCs, with a degree of substitution (DS) values of 0.27-0.54, could be obtained by varying the concentration of chitin, the molar ratio of CHPTAC to chitin unit, and the reaction time at room temperature (25°C). Two QCs (DS=0.36 and 0.54) were selected and studied as gene carriers. Agarose gel retardation assay revealed that both QCs could condense DNA efficiently when N/P ratio>3. The results of particle size and zeta potential indicated that both QCs had a good ability of condensing plasmid DNA into compact nanoparticles with the size of 100-200nm and zeta potential of +18 to +36mV. Compared to polyethylenimine (PEI, 25kDa), the QCs exhibited outstanding low cytotoxicity. Transfection efficiencies of the QCs/DNA complexes were measured using pGL-3 encoding luciferase as the foreign DNA, and the QCs/DNA complexes showed effective transfection efficiencies in 293T cells. These results revealed that the QCs prepared in NaOH/urea aqueous solutions could be used as promising non-viral gene carriers owing to their excellent characteristics.


Transplant International | 2016

Decreased expression of mitochondrial aldehyde dehydrogenase-2 induces liver injury via activation of the mitogen-activated protein kinase pathway.

Zibiao Zhong; Shaojun Ye; Yan Xiong; Lianxi Wu; Meng Zhang; Xiaoli Fan; Ling Li; Zhen Fu; Huanglei Wang; Mingyun Chen; Xiaomin Yan; Wei Huang; Dicken S.C. Ko; Yanfeng Wang; Qifa Ye

The aim of this study was to determine the role of ALDH2 in the injury of liver from brain‐dead donors. Using brain‐dead rabbit model and hypoxia model, levels of ALDH2 and apoptosis in tissues and cell lines were determined by Western blot, flow cytometry (FCM), and transferase (TdT)‐mediated biotin‐16‐dUTP nick‐end labeling (TUNEL) assays. After the expression of ALDH2 during hypoxia had been inhibited or activated, the accumulations of 4‐hydroxynonenal (4‐HNE) and molecules involved in mitogen‐activated protein kinase (MAPK) signaling pathway were analyzed using ELISA kit and Western blot. The low expression of phosphorylated ALDH2 in liver was time‐dependent in the brain‐dead rabbit model. Immunohistochemistry showed ALDH2 was primarily located in endothelial, and the rates of cell apoptosis in the donation after brain‐death (DBD) rabbit groups significantly increased with time. Following the treatment of inhibitor of ALDH2, daidzein, in combination with hypoxia for 8 h, the apoptosis rate and the levels of 4‐HNE, P‐JNK, and cleaved caspase‐3 significantly increased in contrast to that in hypoxic HUVECs; however, they all decreased after treatment with Alda‐1 and hypoxia compared with that in hypoxic HUVECs (P < 0.05). Instead, the levels of P‐P38, P‐ERK, P‐JNK, and cleaved caspase‐3 decreased and the ratio of bcl‐2/bax increased with ad‐ALDH2 (106pfu/ml) in combination with hypoxia for 8 h, which significantly alleviated in contrast to that in hypoxic HUVECs. We found low expression of ALDH2 and high rates of apoptosis in the livers of brain‐dead donor rabbits. Furthermore, decreased ALDH2 led to apoptosis in HUVECs through MAPK pathway.


Artificial Organs | 2016

Hypothermic Machine Perfusion Reduced Inflammatory Reaction by Downregulating the Expression of Matrix Metalloproteinase 9 in a Reperfusion Model of Donation After Cardiac Death.

Zhen Fu; Qifa Ye; Yang Zhang; Zibiao Zhong; Yan Xiong; Yanfeng Wang; Long Hu; Wei Wang; Wei Huang; Dicken S.C. Ko

The exact mechanism by which hypothermic machine perfusion (HMP) improves the graft quality in kidney transplantation of donation after cardiac death (DCD) remains unclear. The aim of this study was to investigate the correlation between the expression of matrix metalloproteinase 9 (MMP-9) and inflammatory reaction in kidney ischemia-reperfusion (I/R) injury injury followed by cold storage (CS) or HMP model of DCD. New Zealand white rabbit kidneys were subjected to 35 min of warm ischemia and 1 h reperfusion, then preserved by either 1 h reperfusion (sham-operated group), 4 h CS or 4 h HMP in vivo. Kidneys were reperfused 24 h followed by further analysis. No treatment was given to rabbits in the normal control group. The expression of MMP-9, nuclear factor-κB (NF-κB), and MMP-2 mRNA were detected by real-time PCR (RT-PCR). MMP-9 was located by immunohistochemistry and immunofluorescence methods. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), myeloperoxidase (MPO), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by kits for each groups. Compared with the CS group, the expression of MMP-9 and NF-κB mRNA were downregulated in HMP group (P < 0.05). In contrast, expression of MMP-2 mRNA had no statistical significance between CS group and HMP group (P > 0.05). In normal control and sham-operated groups, a low level of MMP-9 expression was detected in glomeruli. However, positive signals of MMP-9 were mostly located in the tubulointerstitium and the vascular wall of CS and HMP groups. Expression of TNF-α, IL-6, MDA, and activity of MPO decreased while activity of SOD in the HMP group increased in contrast to the CS group (P < 0.05). In conclusion, inflammatory cytokines mediated MMP-9 expression through NF-κB band to MMP-9 promoter region, resulting in renal injury. Therefore, HMP reduced inflammatory reaction by downregulating the expression of MMP-9, which may be the mechanism of kidney protection in I/R injury.


Artificial Organs | 2017

Mechanisms of Hypothermic Machine Perfusion to Decrease Donation After Cardiac Death Graft Inflammation: Through the Pathway of Upregulating Expression of KLF2 and Inhibiting TGF-β Signaling

Zhongzhong Liu; Zibiao Zhong; Jianan Lan; Mingxia Li; Wei Wang; Jing Yang; Chenwei Tang; Jie Wang; Shaojun Ye; Yan Xiong; Yanfeng Wang; Qifa Ye

Hypothermic machine perfusion (HMP) has been known as an efficient way to improve kidney graft function, but the underlying mechanisms remain unclear. Here, we adopt a rabbit reperfusion mode to investigate the upstream mechanisms of end-ischemic HMP of kidneys from donors after cardiac death (DCD), with static cold storage (CS) as a control. Eighteen New Zealand healthy male rabbits (12 weeks old, with a weight of 3.0 ± 0.2 kg) were randomly divided into three groups: HMP group, CS group, and Normal group (n = 6). The left kidney of rabbits underwent warm ischemia for 25 min through clamping the left renal pedicle and then reperfusion for 1 h. Then the left kidneys were preserved by CS or HMP (4°C for 4 h) ex vivo respectively, after they were autotransplanted and rabbits were submitted to a right nephrectomy. Twenty-four hours after reperfusion, all left renal specimens were collected. Finally, the expression of Krüppel-like factor 2 (KLF2), transforming growth factor-β (TGF-β) and SMAD4 protein in renal cortical tissue were detected by immunoblotting, and the TGF-β and SMAD4 expressions were further confirmed by immunohistochemistry analysis. We found that expression of KLF2 in HMP group was significantly higher than CS group (P = 0.011), while expression of TGF-β and SMAD4 in HMP group were significantly lower than CS group (P = 0.002, P = 0.01, respectively); Compared with normal group, the expression of TGF-β and SMAD4 in HMP and CS group significantly increased (P<0.05). Compared with CS group, TGF-β and SMAD4 protein were equally down-regulated in glomerular and the tubular epithelial cells in HMP group confirmed by immunohistochemistry. In conclusion, HMP may decrease DCD kidneys inflammation through the pathway of upregulating expression of KLF2 and inhibiting TGF-β signaling after transplantation.


Artificial Organs | 2017

Outcome Improvement for Hypothermic Machine Perfusion Versus Cold Storage for Kidneys From Cardiac Death Donors

Zibiao Zhong; Jianan Lan; Shaojun Ye; Zhongzhong Liu; Lin Fan; Yang Zhang; Zhen Fu; Bingbing Qiao; Dicken S.C. Ko; Yanfeng Wang; Qifa Ye

Organ shortage has led to an increased use of kidneys from cardiac death donors (DCDs), but controversies about the methods of organ preservation still exist. This study aims to compare the effect of machine perfusion (MP) and cold storage (CS) in protecting kidneys harvested from DCDs. 141 kidney pairs from DCDs between July 2010 and July 2015 were included in this randomized controlled study. One kidney from each donor was randomly assigned to MP and the contralateral kidney was assigned to CS. Delayed graft function (DGF) rate, resistance index of renal arteries, early renal function, and survival rates were used to estimate the effect of preservation. The results showed that MP decreased the rate of DGF from 33.3 to 22.0% (P = 0.033). Ultrasound of the kidneys within 48 h after transplantation showed that the resistance index of renal main artery (0.673 ± 0.063 vs. 0.793 ± 0.124, P < 0.001), sub segmental artery (0.66 ± 0.062 vs. 0.764 ± 0.077, P < 0.001) and interlobular artery (0.648 ± 0.056 vs. 0.745 ± 0.111, P = 0.023) were all significantly lower in the MP group than those in the CS group. Furthermore, compared to the CS group, in the first 7 days following transplantation, the median urine volume was significantly higher (4080 mL vs. 3000 mL, P = 0.047) in kidneys sustained using MP and the median serum creatinine was remarkably lower (180 µmol/L vs. 390 µmol/L, P = 0.024). More importantly, MP group had higher 1- and 3-year graft survival rates (98% vs. 93%, P = 0.026; 93% vs. 82%, P = 0.036, respectively). Hypothermic MP improved the outcomes of DCD kidney transplantation.

Collaboration


Dive into the Zibiao Zhong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Fu

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Zhang

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge