Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zibin Liang is active.

Publication


Featured researches published by Zibin Liang.


Angewandte Chemie | 2016

Earth-Abundant Nanomaterials for Oxygen Reduction.

Wei Xia; Asif Mahmood; Zibin Liang; Ruqiang Zou; Shaojun Guo

Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.


Nano Letters | 2017

High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite

Wei Xia; Chong Qu; Zibin Liang; Bote Zhao; Shuge Dai; Bin Qiu; Yang Jiao; Qiaobao Zhang; Xinyu Huang; Wenhan Guo; Dai Dang; Ruqiang Zou; Dingguo Xia; Qiang Xu; Meilin Liu

Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.


Advanced Materials | 2017

Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks

Jie Liang; Zibin Liang; Ruqiang Zou; Yanli Zhao

Crystalline porous materials are important in the development of catalytic systems with high scientific and industrial impact. Zeolites, ordered mesoporous silica, and metal-organic frameworks (MOFs) are three types of porous materials that can be used as heterogeneous catalysts. This review focuses on a comparison of the catalytic activities of zeolites, mesoporous silica, and MOFs. In the first part of the review, the distinctive properties of these porous materials relevant to catalysis are discussed, and the corresponding catalytic reactions are highlighted. In the second part, the catalytic behaviors of zeolites, mesoporous silica, and MOFs in four types of general organic reactions (acid, base, oxidation, and hydrogenation) are compared. The advantages and disadvantages of each porous material for catalytic reactions are summarized. Conclusions and prospects for future development of these porous materials in this field are provided in the last section. This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field.


Advanced Materials | 2018

Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion

Zibin Liang; Chong Qu; Wenhan Guo; Ruqiang Zou; Qiang Xu

Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications.


Journal of Materials Chemistry | 2016

A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts

Hassina Tabassum; Ruqiang Zou; Asif Mahmood; Zibin Liang; Shaojun Guo

The search for highly efficient earth-abundant carbon nanomaterials with Pt-like electrocatalytic activity for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is still a great challenge. Herein, we present a new catalyst-free synthetic strategy of self-squeezing and rolling of B, N co-doped graphene nanosheets to nanotubes with tunable dimensions and atomic bonds as metal-free electrocatalysts for enhancing the ORR and HER using (polyethylene glycol (PEG)) as the directing agent. We found that the PEG with a higher molecular weight favors the formation of B, N co-doped graphene nanosheets with a high concentration of B–N bonds in a carbon framework whereas the one with a lower molecular weight leads to B, N co-doped graphene nanotubes (BCN nanotubes) with segregated B–C and N–C bonds. The as-prepared graphene nanostructures show interesting atomic bonds and dimension-dependent electrocatalytic activity towards the ORR and HER with BCN nanotubes being the best. The BCN nanotubes show Pt-like ORR activity and much better ORR stability than commercial Pt/C catalysts. They also exhibit excellent HER activity with a very low overpotential and a small Tafel slope of 92 mV dec−1. The present work highlights the importance of tuning atomic bonds and dimensions of carbon nanomaterials for achieving highly efficient electrocatalysts for the ORR and HER.


Advanced Materials | 2018

A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co‐Doped Graphitic Nanotubes as High‐Performance Lithium‐Ion Battery Anodes

Hassina Tabassum; Ruqiang Zou; Asif Mahmood; Zibin Liang; Qingfei Wang; Hao Zhang; Song Gao; Chong Qu; Wenhan Guo; Shaojun Guo

Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2 O3 , Mn3 O4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g-1 at the current density of 96 mA g-1 , good rate ability (410 mA h g-1 at 1.75 A g-1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.


Journal of Materials Chemistry | 2018

MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors

Chong Qu; Lei Zhang; Wei Meng; Zibin Liang; Bingjun Zhu; Dai Dang; Shuge Dai; Bote Zhao; Hassina Tabassum; Song Gao; Hao Zhang; Wenhan Guo; Ruo Zhao; Xinyu Huang; Meilin Liu; Ruqiang Zou

Hierarchically porous electrodes made of electrochemically active materials and conductive additives may display synergistic effects originating from the interactions between the constituent phases, and this approach has been adopted for optimizing the performances of many electrode materials. Here we report our findings in design, fabrication, and characterization of a hierarchically porous hybrid electrode composed of α-NiS nanorods decorated on reduced graphene oxide (rGO) (denoted as R-NiS/rGO), derived from water-refluxed metal–organic frameworks/rGO (Ni-MOF-74/rGO) templates. Microanalyses reveal that the as-synthesized α-NiS nanorods have abundant (101) and (110) surfaces on the edges, which exhibit a strong affinity for OH− in KOH electrolyte, as confirmed by density functional theory-based calculations. The results suggest that the MOF-derived α-NiS nanorods with highly exposed active surfaces are favorable for fast redox reactions in a basic electrolyte. Besides, the presence of rGO in the hybrid electrode greatly enhances the electronic conductivity, providing efficient current collection for fast energy storage. Indeed, when tested in a supercapacitor with a three-electrode configuration in 2 M KOH electrolyte, the R-NiS/rGO hybrid electrode exhibits a capacity of 744 C g−1 at 1 A g−1 and 600 C g−1 at 50 A g−1, indicating remarkable rate performance, while maintaining more than 89% of the initial capacity after 20 000 cycles. Moreover, when coupled with a nitrogen-doped graphene aerogel (C/NG-A) negative electrode, the hybrid supercapacitor (R-NiS/rGO/electrolyte/C/NG-A) achieved an ultra-high energy density of 93 W h kg−1 at a power density of 962 W kg−1, while still retaining an energy density of 54 W h kg−1 at an elevated working power of 46 034 W kg−1.


RSC Advances | 2017

Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance

Bin Qiu; Wenhan Guo; Zibin Liang; Wei Xia; Song Gao; Qingfei Wang; Xiaofeng Yu; Ruo Zhao; Ruqiang Zou

Cobalt oxides, typically Co3O4, have received considerable attention due to their high theoretical capacity as anode materials for Li-ion batteries. However, their poor electron conductivity and large volume change upon the insertion/removal of Li+ ions limit their practical application. Carbon coating is widely used to improve the electrochemical performance of materials and release the strain during the lithiation/delithiation processes, in which the thickness of the coating carbon shell has a vital role in determining the performance of the material. In this study, Co3O4 nanoparticles coated with a thin carbon shell are obtained from the metal–organic framework (MOF) precursor Co-MOF-74 via a sequential two-step carbonization process, where carbon oxides, e.g., CO2, are used as the oxidation atmosphere in the second step. The carbon content and shell thickness are controlled by changing the calcination time. The electrode containing a certain carbon content (3.17 wt%) exhibits a capacity of 1137 mA h g−1 after 100 cycles tested at 100 mA g−1 between 0.005 and 3.0 V. This enhanced electrochemical performance is attributed to the well-dispersed nanosized Co3O4 particles and thin carbon shell coating on the electrode surface, which shorten the Li+ ion diffusion length and enhance the electron conductivity of the hybrid.


Scientific Reports | 2017

Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors

Hassina Tabassum; Asif Mahmood; Qingfei Wang; Wei Xia; Zibin Liang; Bin Qiu; Ruo Zhao; Ruqiang Zou

To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g−1 at a current density of 1A g−1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg−1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg−1 at power density of 9331 Wkg−1 coupled long termed stability up to 6000 cycles.


Journal of Materials Chemistry | 2017

Highly dispersed Co-based Fischer–Tropsch synthesis catalysts from metal–organic frameworks

Bin Qiu; Ce Yang; Wenhan Guo; Yao Xu; Zibin Liang; Ding Ma; Ruqiang Zou

The influence of pore texture and nitrogen species of the carbon support for the Fischer–Tropsch synthesis was investigated using well-defined catalysts derived from metal–organic frameworks (MOFs). Two typical MOFs were employed in the carbonization process to prepare the target catalysts, i.e. nitrogen-rich ZIF-67 and nitrogen-free Co-MOF-74. The Co-MOF-74-derived nanocomposite (Co@C) showed a carbon monoxide (CO) conversion of 30%, whereas the ZIF-67-derived nanocomposite (Co@NC) exhibited a CO conversion of 10%. The nitrogen-free Co@C composite showed 65% selectivity for long-chain hydrocarbons (C5+) and 10% selectivity for short-chain hydrocarbons (C2–C4) after 100 h on stream; on the other hand, the Co@NC composite showed 31% selectivity for C5+ products and 37% selectivity for short-chain hydrocarbons (C2–C4) after 100 h on stream. The excellent CO conversion was attributed to the large pore size of the carbon support, which facilitates the diffusion of the hydrocarbons. The high C2–C4 selectivity originates from the influence of nitrogen species in the carbon support. This study is expected to open a new avenue for the design of new catalysts for the Fischer–Tropsch synthesis with high activity and superior selectivity via choosing suitable MOFs precursors.

Collaboration


Dive into the Zibin Liang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge