Žiga Malek
VU University Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Žiga Malek.
Mountain Research and Development | 2015
Žiga Malek; L.G.J. Boerboom
Abstract Changes to land use such as the removal of natural vegetation and expansion of urban areas can result in degradation of the landscape and an increase in hydro-meteorological risk. This has led to higher interest by decision-makers and scientists in the future consequences of these drivers. Scenario development can be a useful tool for addressing the high uncertainty regarding modeling future land use changes. Scenarios are not exact forecasts, but images of plausible futures. When studying future land dynamics, emphasis should be given to areas experiencing high rates of socioeconomic change. We have focused on the eastern Italian Alps, which face increasing pressure from tourism development. Identified drivers of local land use change are mostly external and difficult to quantify. This area, characterized by a traditional Alpine landscape, is subject to high levels of hydro-meteorological risk, another reason to study potential future land use changes. We tested a scenario generation method based on existing decisions and assumptions about future tourism development. We aimed to develop a framework leading to plausible scenarios that can overcome data inaccessibility and address external drivers. We combined qualitative methods, such as stakeholder interviews and cognitive mapping, with geospatial methods, such as geographic information systems, geostatistics, and environmental modeling. We involved stakeholders from the beginning to support the steps of generating data, understanding the system of land use change, and developing a land use change model for scenario development. In this way, we generated spatio-temporal scenarios that can assist future spatial planning and improve preparedness for possible undesirable development.
Mitigation and Adaptation Strategies for Global Change | 2018
Žiga Malek; Peter H. Verburg
Meeting the growing demand for food in the future will require adaptation of water and land management to future conditions. We studied the extent of different adaptation options to future global change in the Mediterranean region, under scenarios of water use and availability. We focused on the most significant adaptation options for semiarid regions: implementing irrigation, changes to cropland intensity, and diversification of cropland activities. We used Conversion of Land Use on Mondial Scale (CLUMondo), a global land system model, to simulate future change to land use and land cover, and land management. To take into account future global change, we followed global outlooks for future population and climate change, and crop and livestock demand. The results indicate that the level of irrigation efficiency improvement is an important determinant of potential changes in the intensity of rain-fed land systems. No or low irrigation efficiency improvements lead to a reduction in irrigated areas, accompanied with intensification and expansion of rain-fed cropping systems. When reducing water withdrawal, total crop production in intensive rain-fed systems would need to increase significantly: by 130% without improving the irrigation efficiency in irrigated systems and by 53% under conditions of the highest possible efficiency improvement. In all scenarios, traditional Mediterranean multifunctional land systems continue to play a significant role in food production, especially in hosting livestock. Our results indicate that significant improvements to irrigation efficiency with simultaneous increase in cropland productivity are needed to satisfy future demands for food in the region. The approach can be transferred to other similar regions with strong resource limitations in terms of land and water.
Science of The Total Environment | 2017
Luca Pisano; Veronica Zumpano; Žiga Malek; Carmen Maria Rosskopf; Mario Parise
Land cover is one of the most important conditioning factors in landslide susceptibility analysis. Usually it is considered as a static factor, but it has proven to be dynamic, with changes occurring even in few decades. In this work the influence of land cover changes on landslide susceptibility are analyzed for the past and for future scenarios. For the application, an area representative of the hilly-low mountain sectors of the Italian Southern Apennines was chosen (Rivo basin, in Molise Region). With this purpose landslide inventories and land cover maps were produced for the years 1954, 1981 and 2007. Two alternative future scenarios were created for 2050, one which follows the past trend (2050-trend), and another one more extreme, foreseeing a decrease of forested and cultivated areas (2050-alternative). The landslide susceptibility analysis was performed using the Spatial Multi-Criteria Evaluation method for different time steps, investigating changes to susceptibility over time. The results show that environmental dynamics, such as land cover change, affect slope stability in time. In fact there is a decrease of susceptibility in the past and in the future 2050-trend scenario. This is due to the increase of forest or cultivated areas, that is probably determined by a better land management, water and soil control respect to other land cover types such as shrubland, pasture or bareland. Conversely the results revealed by the alternative scenario (2050-alternative), show how the decrease in forest and cultivated areas leads to an increase in landslide susceptibility. This can be related to the assumed worst climatic condition leading to a minor agricultural activity and lower extension of forested areas, possibly associated also to the effects of forest fires. The results suggest that conscious landscape management might contribute to determine a significant reduction in landslide susceptibility.
Environment, Development and Sustainability | 2018
Žiga Malek; Veronica Zumpano; H.Y. Hussin
This study investigates consequences of future changes to the provision of ecosystem services (ES) in the Romanian Carpathians. Two 2040 forest management scenarios were compared, using two indicators to describe the gains and losses of ES. Changes in landslide regulation potential were defined as changes to landslide susceptibility. High nature value grasslands characterized biodiversity support. The business as usual scenario results in a 8% lower loss of landslide regulation potential compared to the alternative scenario. It also results in a 29% higher regional net gain of landslide regulation potential. Both scenarios result in the loss of biodiversity support due to their prevalent transition of forest expansion. This type of information is crucial for informing decision makers on the locations of potential gains and losses of future development.
Engineering Geology for Society and Territory - Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation | 2015
Žiga Malek; Veronica Zumpano; Dagmar Schröter; Thomas Glade; Dan Balteanu; Mihai Micu
Since 1990 the Subcarpathians in Buzau County, Romania have witnessed substantial socioeconomic changes and resulting changes in the land cover. Influenced by the interplay of poor economic conditions, land ownership reforms, and institutional difficulties, these changes have been difficult to manage, resulting in a dispersal of built-up areas. Even though, the spatial extent of land cover changes has not reached critical levels as similar areas in the Carpathians, our analysis suggests that in the future the area might experience more extreme land cover changes. Moreover, the litho-structural traits and the high relief energy of the Romanian Subcarpathians favored the occurrence of various types of mass movements, imposing different levels of risk to people, buildings and infrastructure. Increase of human influence in form of expansion of built-up areas in the area could therefore result in slope instability and changes in the temporal and spatial patterns of hydro-meteorological hazards. This study shows, that possible future changes in land cover will not have a major influence on hazards, however risk might increase due to the increased value and number of elements at risk.
WLF 2017: Advancing Culture of Living with Landslides. Landslides in Different Environments | 2017
Luca Pisano; Veronica Zumpano; Žiga Malek; Mihai Micu; Carmen Maria Rosskopf; Mario Parise
Human activities, including extensive land use practices, such as deforestation and intensive cultivation, may severely affect the landscape, and have caused important changes to the extent of natural forests during the last century in Southern Italy. Such changes had a strong influence on the frequency of occurrence of natural hazards, including landslides. Being one of the most significant control factors of slope movements, any variation in land cover pattern may determine changes in landslide distribution. The study area is the Rivo Basin which is located in Molise (Southern Apennines of Italy), a region severely affected by landslides. We prepared multi-temporal land cover and landslide inventory maps, aimed at developing different susceptibility maps to evaluate the effects of land cover changes in the predisposition to landslides. Based on the observed land cover trends in the study area, we simulated future scenarios of land cover in the attempt to assess potential future changes in landslide distribution and susceptibility. By investigating the relationship between the spatial pattern and distribution of past land cover settings and location factors (as elevation, slope, distance to settlements), we were able to calibrate a land cover change model to simulate future scenarios. The obtained results give important information both regarding the impact of past trends of land cover changes on landslide occurrence and possible future directions. They could be useful to provide insights toward a better land management for the study area, as well as for similar landslide-prone environments in Southern Italy, contributing to establish good practices for future landslide risk mitigation.
Environmental Management | 2015
Žiga Malek; L.G.J. Boerboom; Thomas Glade
Landscape and Urban Planning | 2017
Žiga Malek; Peter H. Verburg
Land Degradation & Development | 2017
Harun M. Kiruki; Emma H. van der Zanden; Žiga Malek; Peter H. Verburg
Global Environmental Change-human and Policy Dimensions | 2018
Žiga Malek; Peter H. Verburg; Ilse R. Geijzendorffer; Alberte Bondeau; Wolfgang Cramer