Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zijian Feng is active.

Publication


Featured researches published by Zijian Feng.


The New England Journal of Medicine | 2013

Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus

Rongbao Gao; Bin Cao; Yunwen Hu; Zijian Feng; Dayan Wang; Wanfu Hu; Jian Chen; Zhijun Jie; Haibo Qiu; Ke Xu; Xuewei Xu; Hongzhou Lu; Wenfei Zhu; Zhancheng Gao; Nijuan Xiang; Yinzhong Shen; Zebao He; Yong Gu; Zhiyong Zhang; Yi Yang; Xiang Zhao; Lei Zhou; Xiaodan Li; Shumei Zou; Ye Zhang; Xiyan Li; Lei Yang; Junfeng Guo; Jie Dong; Qun Li

BACKGROUND Infection of poultry with influenza A subtype H7 viruses occurs worldwide, but the introduction of this subtype to humans in Asia has not been observed previously. In March 2013, three urban residents of Shanghai or Anhui, China, presented with rapidly progressing lower respiratory tract infections and were found to be infected with a novel reassortant avian-origin influenza A (H7N9) virus. METHODS We obtained and analyzed clinical, epidemiologic, and virologic data from these patients. Respiratory specimens were tested for influenza and other respiratory viruses by means of real-time reverse-transcriptase-polymerase-chain-reaction assays, viral culturing, and sequence analyses. RESULTS A novel reassortant avian-origin influenza A (H7N9) virus was isolated from respiratory specimens obtained from all three patients and was identified as H7N9. Sequencing analyses revealed that all the genes from these three viruses were of avian origin, with six internal genes from avian influenza A (H9N2) viruses. Substitution Q226L (H3 numbering) at the 210-loop in the hemagglutinin (HA) gene was found in the A/Anhui/1/2013 and A/Shanghai/2/2013 virus but not in the A/Shanghai/1/2013 virus. A T160A mutation was identified at the 150-loop in the HA gene of all three viruses. A deletion of five amino acids in the neuraminidase (NA) stalk region was found in all three viruses. All three patients presented with fever, cough, and dyspnea. Two of the patients had a history of recent exposure to poultry. Chest radiography revealed diffuse opacities and consolidation. Complications included acute respiratory distress syndrome and multiorgan failure. All three patients died. CONCLUSIONS Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).


The New England Journal of Medicine | 2014

Epidemiology of Human Infections with Avian Influenza A(H7N9) Virus in China

Qun Li; Lei Zhou; Minghao Zhou; Zhiping Chen; Furong Li; Huanyu Wu; Nijuan Xiang; Enfu Chen; Fenyang Tang; Dayan Wang; Ling Meng; Zhiheng Hong; Wenxiao Tu; Yang Cao; Leilei Li; Fan Ding; Bo Liu; Mei Wang; Rongheng Xie; Rongbao Gao; Xiaodan Li; Tian Bai; Shumei Zou; Jun He; Jiayu Hu; Yangting Xu; Chengliang Chai; Shiwen Wang; Yongjun Gao; Lianmei Jin

BACKGROUND The first identified cases of avian influenza A(H7N9) virus infection in humans occurred in China during February and March 2013. We analyzed data obtained from field investigations to describe the epidemiologic characteristics of H7N9 cases in China identified as of December 1, 2013. METHODS Field investigations were conducted for each confirmed case of H7N9 virus infection. A patient was considered to have a confirmed case if the presence of the H7N9 virus was verified by means of real-time reverse-transcriptase-polymerase-chain-reaction assay (RT-PCR), viral isolation, or serologic testing. Information on demographic characteristics, exposure history, and illness timelines was obtained from patients with confirmed cases. Close contacts were monitored for 7 days for symptoms of illness. Throat swabs were obtained from contacts in whom symptoms developed and were tested for the presence of the H7N9 virus by means of real-time RT-PCR. RESULTS Among 139 persons with confirmed H7N9 virus infection, the median age was 61 years (range, 2 to 91), 71% were male, and 73% were urban residents. Confirmed cases occurred in 12 areas of China. Nine persons were poultry workers, and of 131 persons with available data, 82% had a history of exposure to live animals, including chickens (82%). A total of 137 persons (99%) were hospitalized, 125 (90%) had pneumonia or respiratory failure, and 65 of 103 with available data (63%) were admitted to an intensive care unit. A total of 47 persons (34%) died in the hospital after a median duration of illness of 21 days, 88 were discharged from the hospital, and 2 remain hospitalized in critical condition; 2 patients were not admitted to a hospital. In four family clusters, human-to-human transmission of H7N9 virus could not be ruled out. Excluding secondary cases in clusters, 2675 close contacts of case patients completed the monitoring period; respiratory symptoms developed in 28 of them (1%); all tested negative for H7N9 virus. CONCLUSIONS Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families.


The Lancet | 2014

Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study

Haiying Chen; Hui Yuan; Rongbao Gao; Jinxiang Zhang; Dayan Wang; Ying Xiong; Guoyin Fan; Fan Yang; Xiaodan Li; Jianfang Zhou; Shumei Zou; Lei Yang; Tao Chen; Libo Dong; Hong Bo; Xiang Zhao; Ye Zhang; Yu Lan; Tian Bai; Jie Dong; Qun Li; Shiwen Wang; Zhang Y; Hui Li; Tian Gong; Yong Shi; Xiansheng Ni; Jianxiong Li; Jun Zhou; Jiyi Fan

BACKGROUND Human infections with different avian influenza viruses--eg, H5N1, H9N2, and H7N9--have raised concerns about pandemic potential worldwide. We report the first human infection with a novel reassortant avian influenza A H10N8 virus. METHODS We obtained and analysed clinical, epidemiological, and virological data from a patient from Nanchang City, China. Tracheal aspirate specimens were tested for influenza virus and other possible pathogens by RT-PCR, viral culture, and sequence analyses. A maximum likelihood phylogenetic tree was constructed. FINDINGS A woman aged 73 years presented with fever and was admitted to hospital on Nov 30, 2013. She developed multiple organ failure and died 9 days after illness onset. A novel reassortant avian influenza A H10N8 virus was isolated from the tracheal aspirate specimen obtained from the patient 7 days after onset of illness. Sequence analyses revealed that all the genes of the virus were of avian origin, with six internal genes from avian influenza A H9N2 viruses. The aminoacid motif GlnSerGly at residues 226-228 of the haemagglutinin protein indicated avian-like receptor binding preference. A mixture of glutamic acid and lysine at residue 627 in PB2 protein--which is associated with mammalian adaptation--was detected in the original tracheal aspirate samples. The virus was sensitive to neuraminidase inhibitors. Sputum and blood cultures and deep sequencing analysis indicated no co-infection with bacteria or fungi. Epidemiological investigation established that the patient had visited a live poultry market 4 days before illness onset. INTERPRETATION The novel reassortant H10N8 virus obtained is distinct from previously reported H10N8 viruses. The virus caused human infection and could have been associated with the death of a patient. FUNDING Emergency Research Project on human infection with avian influenza H7N9 virus, the National Basic Research Program of China, and the National Mega-projects for Infectious Diseases.


Virology Journal | 2010

An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China.

Yan Zhang; Zhen Zhu; Weizhong Yang; Jun Ren; Xiaojuan Tan; Wang Y; Naiying Mao; Songtao Xu; Shuangli Zhu; Aili Cui; Yong Zhang; Dongmei Yan; Qun Li; Xiao-Ping Dong; Jing Zhang; Yueping Zhao; Junfeng Wan; Zijian Feng; Junling Sun; Shiwen Wang; Dexin Li; Wenbo Xu

Hand, foot and mouth disease (HFMD), a common contagious disease that usually affects children, is normally mild but can have life-threatening manifestations. It can be caused by enteroviruses, particularly Coxsackieviruses and human enterovirus 71 (HEV71) with highly variable clinical manifestations. In the spring of 2008, a large, unprecedented HFMD outbreak in Fuyang city of Anhui province in the central part of southeastern China resulted in a high aggregation of fatal cases. In this study, epidemiologic and clinical investigations, laboratory testing, and genetic analyses were performed to identify the causal pathogen of the outbreak. Of the 6,049 cases reported between 1 March and 9 May of 2008, 3023 (50%) were hospitalized, 353 (5.8%) were severe and 22 (0.36%) were fatal. HEV71 was confirmed as the etiological pathogen of the outbreak. Phylogenetic analyses of entire VP1 capsid protein sequence of 45 Fuyang HEV71 isolates showed that they belong to C4a cluster of the C4 subgenotype. In addition, genetic recombinations were found in the 3D region (RNA-dependent RNA polymerase, a major component of the viral replication complex of the genome) between the Fuyang HEV71 strain and Coxsackievirus A16 (CV-A16), resulting in a recombination virus. In conclusion, an emerging recombinant HEV71 was responsible for the HFMD outbreak in Fuyang City of China, 2008.


The Lancet | 2006

Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial

Jiangtao Lin; Jiansan Zhang; Xiaoping Dong; Han-Hua Fang; Jiang-Ting Chen; Nan Su; Qiang Gao; Zhenshan Zhang; Yuxuan Liu; Zhihong Wang; Meng Yang; Ruihua Sun; Chang-Gui Li; Su Lin; Mei Ji; Yan Liu; Xu Wang; John Wood; Zijian Feng; Wang Y; Weidong Yin

BACKGROUND Avian influenza A virus H5N1 has caused widespread infections that have resulted in severe disease or death in poultry and wild birds as well as human beings. This virus has the potential to emerge as a pandemic threat and H5N1 vaccines are being developed in many countries. Our aim was to assess the safety and immunogenicity of an inactivated adjuvanted whole-virion H5N1 vaccine. METHODS A stratified randomised, placebo-controlled, double-blind phase I clinical trial was done in 120 volunteers aged 18-60 years. Volunteers were assigned to receive two doses of placebo (n=24) or an inactivated whole-virion influenza A (H5N1) vaccine with 1.25 microg (24), 2.5 microg (24), 5 microg (24), or 10 microg (24) haemagglutinin per dose with aluminium hydroxide adjuvant on day 0 and 28. Serum samples were obtained on day 0, 14, 28, 42, and 56 for haemagglutination inhibition and virus neutralisation assays. This trial is registered with the ClinicalTrials.gov registry with the number NCT00356798. FINDINGS All four formulations of vaccines were well tolerated. No serious adverse event was reported and most local and systemic reactions were mild and transient. All formulations induced antibody responses after the first dose; the highest immune response of 78% seropositivity was seen in the 10 mug group after two vaccine doses. Two individuals dropped out: one in the 1.25 microg group (withdrew consent) and one in the 10 microg group (discontinued); one individual was also excluded from the final analysis. INTERPRETATION A two-dose regimen of an adjuvanted 10 microg inactivated whole-virion H5N1 vaccine met all European regulatory requirements for annual licensing of seasonal influenza vaccine. Lower doses of this vaccine could achieve immune responses equivalent to those elicited by adjuvanted or non-adjuvanted split-virion vaccines. The use of a whole virion vaccine could be more adaptable to the antigen-sparing strategy recommended by WHO for protection against an influenza pandemic.


Nature | 2013

Biological features of novel avian influenza A (H7N9) virus

Jiangfang Zhou; Dayan Wang; Rongbao Gao; Baihui Zhao; Jingdong Song; Xian Qi; Yanjun Zhang; Yonglin Shi; Lei Yang; Wenfei Zhu; Tian Bai; Kun Qin; Yu Lan; Shumei Zou; Junfeng Guo; Jie Dong; Libo Dong; Ye Zhang; Hejiang Wei; Xiaodan Li; Jian Lu; Liqi Liu; Xiang Zhao; Xiyan Li; Weijuan Huang; Leying Wen; Hong Bo; Li Xin; Yongkun Chen; Cuilin Xu

Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.


The Lancet | 2008

Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China.

Hua Wang; Zijian Feng; Yuelong Shu; Hongjie Yu; Lei Zhou; Rongqiang Zu; Yang Huai; Jie Dong; Changjun Bao; Leying Wen; Hong Wang; Peng Yang; Wei Zhao; Libo Dong; Minghao Zhou; Qiaohong Liao; Haitao Yang; Min Wang; Xiaojun Lu; Zhiyang Shi; Wei Wang; Ling Gu; Fengcai Zhu; Qun Li; Weidong Yin; Weizhong Yang; Dexin Li; Timothy M. Uyeki; Wang Y

BACKGROUND In December, 2007, a family cluster of two individuals infected with highly pathogenic avian influenza A (H5N1) virus was identified in Jiangsu Province, China. Field and laboratory investigations were implemented immediately by public-health authorities. METHODS Epidemiological, clinical, and virological data were collected and analysed. Respiratory specimens from the patients were tested by reverse transcriptase (RT) PCR and by viral culture for the presence of H5N1 virus. Contacts of cases were monitored for symptoms of illness for 10 days. Any contacts who became ill had respiratory specimens collected for H5N1 testing by RT PCR. Sera were obtained from contacts for H5N1 serological testing by microneutralisation and horse red-blood-cell haemagglutinin inhibition assays. FINDINGS The 24-year-old index case died, and the second case, his 52-year-old father, survived after receiving early antiviral treatment and post-vaccination plasma from a participant in an H5N1 vaccine trial. The index cases only plausible exposure to H5N1 virus was a poultry market visit 6 days before the onset of illness. The second case had substantial unprotected close exposure to his ill son. 91 contacts with close exposure to one or both cases without adequate protective equipment provided consent for serological investigation. Of these individuals, 78 (86%) received oseltamivir chemoprophylaxis and two had mild illness. Both ill contacts tested negative for H5N1 by RT PCR. All 91 close contacts tested negative for H5N1 antibodies. H5N1 viruses isolated from the two cases were genetically identical except for one non-synonymous nucleotide substitution. INTERPRETATION Limited, non-sustained person-to-person transmission of H5N1 virus probably occurred in this family cluster.


The Lancet | 2013

Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases

Benjamin J. Cowling; Lianmei Jin; Eric H. Y. Lau; Qiaohong Liao; Peng Wu; Hui Jiang; Tim K. Tsang; Jiandong Zheng; Vicky J. Fang; Zhaorui Chang; My Ni; Qian Zhang; Dennis K. M. Ip; Jianxing Yu; Yu Li; Liping Wang; Wenxiao Tu; Ling Meng; Joseph T. Wu; Huiming Luo; Qun Li; Yuelong Shu; Zhongjie Li; Zijian Feng; Weizhong Yang; Wang Y; Gabriel M. Leung; Hongjie Yu

BACKGROUND The novel influenza A H7N9 virus emerged recently in mainland China, whereas the influenza A H5N1 virus has infected people in China since 2003. Both infections are thought to be mainly zoonotic. We aimed to compare the epidemiological characteristics of the complete series of laboratory-confirmed cases of both viruses in mainland China so far. METHODS An integrated database was constructed with information about demographic, epidemiological, and clinical variables of laboratory-confirmed cases of H7N9 (130 patients) and H5N1 (43 patients) that were reported to the Chinese Centre for Disease Control and Prevention until May 24, 2013. We described disease occurrence by age, sex, and geography, and estimated key epidemiological variables. We used survival analysis techniques to estimate the following distributions: infection to onset, onset to admission, onset to laboratory confirmation, admission to death, and admission to discharge. FINDINGS The median age of the 130 individuals with confirmed infection with H7N9 was 62 years and of the 43 with H5N1 was 26 years. In urban areas, 74% of cases of both viruses were in men, whereas in rural areas the proportions of the viruses in men were 62% for H7N9 and 33% for H5N1. 75% of patients infected with H7N9 and 71% of those with H5N1 reported recent exposure to poultry. The mean incubation period of H7N9 was 3·1 days and of H5N1 was 3·3 days. On average, 21 contacts were traced for each case of H7N9 in urban areas and 18 in rural areas, compared with 90 and 63 for H5N1. The fatality risk on admission to hospital was 36% (95% CI 26-45) for H7N9 and 70% (56-83%) for H5N1. INTERPRETATION The sex ratios in urban compared with rural cases are consistent with exposure to poultry driving the risk of infection--a higher risk in men was only recorded in urban areas but not in rural areas, and the increased risk for men was of a similar magnitude for H7N9 and H5N1. However, the difference in susceptibility to serious illness with the two different viruses remains unexplained, since most cases of H7N9 were in older adults whereas most cases of H5N1 were in younger people. A limitation of our study is that we compared laboratory-confirmed cases of H7N9 and H5N1 infection, and some infections might not have been ascertained. FUNDING Ministry of Science and Technology, China; Research Fund for the Control of Infectious Disease and University Grants Committee, Hong Kong Special Administrative Region, China; and the US National Institutes of Health.


The Lancet | 2013

Human infection with avian influenza A H7N9 virus: an assessment of clinical severity.

Hongjie Yu; Benjamin J. Cowling; Luzhao Feng; Eric H. Y. Lau; Qiaohong Liao; Tim K. Tsang; Zhibin Peng; Peng Wu; Fengfeng Liu; Vicky J. Fang; Honglong Zhang; Ming Li; Lingjia Zeng; Zhen Xu; Zhongjie Li; Huiming Luo; Qun Li; Zijian Feng; Bin Cao; Weizhong Yang; Joseph T. Wu; Wang Y; Gabriel M. Leung

Summary Background Characterisation of the severity profile of human infections with influenza viruses of animal origin is a part of pandemic risk assessment, and an important part of the assessment of disease epidemiology. Our objective was to assess the clinical severity of human infections with avian influenza A H7N9 virus, which emerged in China in early 2013. Methods We obtained information about laboratory-confirmed cases of avian influenza A H7N9 virus infection reported as of May 28, 2013, from an integrated database built by the Chinese Center for Disease Control and Prevention. We estimated the risk of fatality, mechanical ventilation, and admission to the intensive care unit for patients who required hospital admission for medical reasons. We also used information about laboratory-confirmed cases detected through sentinel influenza-like illness surveillance to estimate the symptomatic case fatality risk. Findings Of 123 patients with laboratory-confirmed avian influenza A H7N9 virus infection who were admitted to hospital, 37 (30%) had died and 69 (56%) had recovered by May 28, 2013. After we accounted for incomplete data for 17 patients who were still in hospital, we estimated the fatality risk for all ages to be 36% (95% CI 26–45) on admission to hospital. Risks of mechanical ventilation or fatality (69%, 95% CI 60–77) and of admission to an intensive care unit, mechanical ventilation, or fatality (83%, 76–90) were high. With assumptions about coverage of the sentinel surveillance network and health-care-seeking behaviour for patients with influenza-like illness associated with influenza A H7N9 virus infection, and pro-rata extrapolation, we estimated that the symptomatic case fatality risk could be between 160 (63–460) and 2800 (1000–9400) per 100 000 symptomatic cases. Interpretation Human infections with avian influenza A H7N9 virus seem to be less serious than has been previously reported. Many mild cases might already have occurred. Continued vigilance and sustained intensive control efforts are needed to minimise the risk of human infection. Funding Chinese Ministry of Science and Technology; Research Fund for the Control of Infectious Disease; Hong Kong University Grants Committee; China–US Collaborative Program on Emerging and Re-emerging Infectious Diseases; Harvard Center for Communicable Disease Dynamics; US National Institute of Allergy and Infectious Disease; and the US National Institutes of Health.


The Lancet | 2014

Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study.

Hongjie Yu; Joseph T. Wu; Benjamin J. Cowling; Qiaohong Liao; Vicky J. Fang; Sheng Zhou; Peng Wu; Hang Zhou; Eric H. Y. Lau; Danhuai Guo; My Ni; Zhibin Peng; Luzhao Feng; Hui Jiang; Huiming Luo; Qun Li; Zijian Feng; Wang Y; Weizhong Yang; Gabriel M. Leung

BACKGROUND Transmission of the novel avian influenza A H7N9 virus seems to be predominantly between poultry and people. In the major Chinese cities of Shanghai, Hangzhou, Huzhou, and Nanjing--where most human cases of infection have occurred--live poultry markets (LPMs) were closed in April, 2013, soon after the initial outbreak, as a precautionary public health measure. Our objective was to quantify the effect of LPM closure in these cities on poultry-to-person transmission of avian influenza A H7N9 virus. METHODS We obtained information about every laboratory-confirmed human case of avian influenza A H7N9 virus infection reported in the four cities by June 7, 2013, from a database built by the Chinese Center for Disease Control and Prevention. We used data for age, sex, location, residence type (rural or urban area), and dates of illness onset. We obtained information about LPMs from official sources. We constructed a statistical model to explain the patterns in incidence of cases reported in each city on the basis of the assumption of a constant force of infection before LPM closure, and a different constant force of infection after closure. We fitted the model with Markov chain Monte Carlo methods. FINDINGS 85 human cases of avian influenza A H7N9 virus infection were reported in Shanghai, Hangzhou, Huzhou, and Nanjing by June 7, 2013, of which 60 were included in our main analysis. Closure of LPMs reduced the mean daily number of infections by 99% (95% credibility interval 93-100%) in Shanghai, by 99% (92-100%) in Hangzhou, by 97% (68-100%) in Huzhou, and by 97% (81-100%) in Nanjing. Because LPMs were the predominant source of exposure to avian influenza A H7N9 virus for confirmed cases in these cities, we estimated that the mean incubation period was 3·3 days (1·4-5·7). INTERPRETATION LPM closures were effective in the control of human risk of avian influenza A H7N9 virus infection in the spring of 2013. In the short term, LPM closure should be rapidly implemented in areas where the virus is identified in live poultry or people. In the long term, evidence-based discussions and deliberations about the role of market rest days and central slaughtering of all live poultry should be renewed. FUNDING Ministry of Science and Technology, China; Research Fund for the Control of Infectious Disease; Hong Kong University Grants Committee; China-US Collaborative Program on Emerging and Re-emerging Infectious Diseases; Harvard Center for Communicable Disease Dynamics; and the US National Institutes of Health.

Collaboration


Dive into the Zijian Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weizhong Yang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Qun Li

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lei Zhou

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Wang Y

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Nijuan Xiang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yuelong Shu

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Shiwen Wang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yang Huai

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Zhibin Peng

Chinese Center for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge