Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zijian Xie is active.

Publication


Featured researches published by Zijian Xie.


Biochimica et Biophysica Acta | 2003

Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection.

Keith D. Garlid; Pierre Dos Santos; Zijian Xie; Alexandre D. T. Costa; Petr Paucek

Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.


Journal of Biological Chemistry | 1999

Intracellular Reactive Oxygen Species Mediate the Linkage of Na+/K+-ATPase to Hypertrophy and Its Marker Genes in Cardiac Myocytes

Zijian Xie; Peter Kometiani; Jiang Liu; Jie Li; Joseph I. Shapiro; Amir Askari

We showed before that in cardiac myocytes partial inhibition of Na+/K+-ATPase by nontoxic concentrations of ouabain causes hypertrophy and transcriptional regulations of growth-related marker genes through multiple Ca2+-dependent signal pathways many of which involve Ras and p42/44 mitogen-activated protein kinases. The aim of this work was to explore the roles of intracellular reactive oxygen species (ROS) in these ouabain-initiated pathways. Ouabain caused a rapid generation of ROS within the myocytes that was prevented by preexposure of cells to N-acetylcysteine (NAC) or vitamin E. These antioxidants also blocked or attenuated the following actions of ouabain: inductions of the genes of skeletal α-actin and atrial natriuretic factor, repression of the gene of the α3-subunit of Na+/K+-ATPase, activation of mitogen-activated protein kinases, activation of Ras-dependent protein synthesis, and activation of transcription factor NF-κB. Induction of c-fos and activation of AP-1 by ouabain were not sensitive to NAC. Ouabain-induced inhibition of active Rb+ uptake through Na+/K+-ATPase and the resulting rise in intracellular Ca2+ were also not prevented by NAC. A phorbol ester that also causes myocyte hypertrophy did not increase ROS generation, and its effects on marker genes and protein synthesis were not affected by NAC. We conclude the following: (a) ROS are essential second messengers within some but not all signal pathways that are activated by the effect of ouabain on Na+/K+-ATPase; (b) the ROS-dependent pathways are involved in ouabain-induced hypertrophy; (c) increased ROS generation is not a common response of the myocyte to all hypertrophic stimuli; and (d) it may be possible to dissociate the positive inotropic effect of ouabain from its growth-related effects by alteration of the redox state of the cardiac myocyte.


Journal of Biological Chemistry | 1998

Multiple Signal Transduction Pathways Link Na+/K+-ATPase to Growth-related Genes in Cardiac Myocytes THE ROLES OF Ras AND MITOGEN-ACTIVATED PROTEIN KINASES

Peter Kometiani; Jie Li; Luigi Gnudi; Barbara B. Kahn; Amir Askari; Zijian Xie

We showed before that in neonatal rat cardiac myocytes partial inhibition of Na+/K+-ATPase by nontoxic concentrations of ouabain causes hypertrophic growth and transcriptional regulations of genes that are markers of cardiac hypertrophy. In view of the suggested roles of Ras and p42/44 mitogen-activated protein kinases (MAPKs) as key mediators of cardiac hypertrophy, the aim of this work was to explore their roles in ouabain-initiated signal pathways regulating four growth-related genes of these myocytes,i.e. those for c-Fos, skeletal α-actin, atrial natriuretic factor, and the α3-subunit of Na+/K+-ATPase. Ouabain caused rapid activations of Ras and p42/44 MAPKs; the latter was sustained longer than 90 min. Using high efficiency adenoviral-mediated expression of a dominant-negative Ras mutant, and a specific inhibitor of MAPK kinase (MEK), activation of Ras-Raf-MEK-p42/44 MAPK cascade by ouabain was shown. The effects of the mutant Ras, an inhibitor of Ras farnesylation, and the MEK inhibitor on ouabain-induced changes in mRNAs of the four genes indicated that (a) skeletal α-actin induction was dependent on Ras but not on p42/44 MAPKs, (b) α3 repression was dependent on the Ras-p42/44 MAPK cascade, and (c) induction of c-fos or atrial natriuretic factor gene occurred partly through the Ras-p42/44 MAPK cascade, and partly through pathways independent of Ras and p42/44 MAPKs. All ouabain effects required extracellular Ca2+, and were attenuated by a Ca2+/calmodulin antagonist or a protein kinase C inhibitor. The findings show that (a) signal pathways linked to sarcolemmal Na+/K+-ATPase share early segments involving Ca2+ and protein kinase C, but diverge into multiple branches only some of which involve Ras, or p42/44 MAPKs, or both; and (b) there are significant differences between this network and the related gene regulatory pathways activated by other hypertrophic stimuli, including those whose responses involve increases in intracellular free Ca2+ through different mechanisms.


Hypertension | 2006

Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy.

David J. Kennedy; Sandeep Vetteth; Sankaridrug M. Periyasamy; Mohamed Kanj; Larisa Fedorova; Samer Khouri; M. Bashar Kahaleh; Zijian Xie; Deepak Malhotra; Nikolai I. Kolodkin; Edward G. Lakatta; Olga V. Fedorova; Alexei Y. Bagrov; Joseph I. Shapiro

Patients with chronic renal failure develop a “uremic” cardiomyopathy characterized by diastolic dysfunction, cardiac hypertrophy, and systemic oxidant stress. Patients with chronic renal failure are also known to have increases in the circulating concentrations of the cardiotonic steroid marinobufagenin (MBG). On this background, we hypothesized that elevations in circulating MBG may be involved in the cardiomyopathy. First, we observed that administration of MBG (10 &mgr;g/kg per day) for 4 weeks caused comparable increases in plasma MBG as partial nephrectomy at 4 weeks. MBG infusion caused increases in conscious blood pressure, cardiac weight, and the time constant for left ventricular relaxation similar to partial nephrectomy. Decreases in the expression of the cardiac sarcoplasmic reticulum ATPase, cardiac fibrosis, and systemic oxidant stress were observed with both MBG infusion and partial nephrectomy. Next, rats were actively immunized against a MBG-BSA conjugate or BSA control, and partial nephrectomy was subsequently performed. Immunization against MBG attenuated the cardiac hypertrophy, impairment of diastolic function, cardiac fibrosis, and systemic oxidant stress seen with partial nephrectomy without a significant effect on conscious blood pressure. These data suggest that the increased concentrations of MBG are important in the cardiac disease and oxidant stress state seen with renal failure.


Journal of Biological Chemistry | 2007

Identification of a Pool of Non-pumping Na/K-ATPase *

Man Liang; Jiang Tian; Lijun Liu; Sandrine V. Pierre; Jiang Liu; Joseph I. Shapiro; Zijian Xie

Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. Here, we present experimental evidence demonstrating that over half of the plasma membrane Na/K-ATPase in LLC-PK1 cells is performing cellular functions other than ion pumping. This “non-pumping” pool of Na/K-ATPase, like the pumping pump, binds ouabain. Depletion of either cholesterol or caveolin-1 moves some of the “non-pumping” Na/K-ATPase into the pumping pool. Graded knock-down of the α1 subunit of the Na/K-ATPase eventually results in loss of this “non-pumping” pool while preserving the pumping pool. Our prior studies indicate that a loss of the non-pumping pool is associated with a loss of receptor function as evidenced by the failure of ouabain administration to induce the activation of Src and/or ERK. Therefore, our new findings suggest that a substantial amount of surface-expressed Na/K-ATPase, at least in some types of cells, may function as non-canonical ouabain-binding receptors.


Journal of Biological Chemistry | 2006

Functional Characterization of Src-interacting Na/K-ATPase Using RNA Interference Assay

Man Liang; Ting Cai; Jiang Tian; Weikai Qu; Zijian Xie

We have shown that the Na/K-ATPase and Src form a signaling receptor complex. Here we determined how alterations in the amount and properties of the Na/K-ATPase affect basal Src activity and ouabain-induced signal transduction. Several α1 subunit knockdown cell lines were generated by transfecting LLC-PK1 cells with a vector expressing α1-specific small interference RNA. Although the α1 knockdown resulted in significant decreases in Na/K-ATPase activity, it increased the basal Src activity and tyrosine phosphorylation of focal adhesion kinase, a Src effector. Concomitantly it also abolished ouabaininduced activation of Src and ERK1/2. When the knockdown cells were rescued by a rat α1, both Na/K-ATPase activity and the basal Src activity were restored. In addition, ouabain was able to stimulate Src and ERK1/2 in the rescued cells at a much higher concentration, consistent with the established differences in ouabain sensitivity between pig and rat α1. Finally both fluorescence resonance energy transfer analysis and co-immunoprecipitation assay indicated that the pumping-null rat α1 (D371E) mutant could also bind Src. Expression of this mutant restored the basal Src activity and focal adhesion kinase tyrosine phosphorylation. Taken together, the new findings suggest that LLC-PK1 cells contain a pool of Src-interacting Na/K-ATPase that not only regulates Src activity but also serves as a receptor for ouabain to activate protein kinases.


Pflügers Archiv: European Journal of Physiology | 2009

The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades

Zhichuan Li; Zijian Xie

The Na/K-ATPase was discovered by Skou in 1957. Since then, the efforts of numerous investigators have led to the following conclusions: (a) This enzyme is indeed the molecular machine for the ATP-dependent and -coupled transport of Na+ and K+ across the plasma membrane of a living cell in which such a process (sodium pump) is detected. (b) The Na/K-ATPase is also an important signal transducer that not only interacts and regulates protein kinases, but also functions as a scaffold, capable of bringing the affector and effectors together to form functional signalosomes. This minireview discusses the interaction between the Na/K-ATPase and Src to illustrate how a P-type ATPase can act as a receptor, converting a ligand-binding signal to the activation of protein kinase cascades and the generation of second messengers.


Hypertension | 2007

Marinobufagenin Stimulates Fibroblast Collagen Production and Causes Fibrosis in Experimental Uremic Cardiomyopathy

Jihad Elkareh; David J. Kennedy; Belvadi Yashaswi; Sandeep Vetteth; Amjad Shidyak; Eric G. R. Kim; Sleiman Smaili; Sankaridrug M. Periyasamy; Imad M. Hariri; Larisa Fedorova; Jiang Liu; Liang Wu; M. Bashar Kahaleh; Zijian Xie; Deepak Malhotra; Olga V. Fedorova; Vladimir A. Kashkin; Alexei Y. Bagrov; Joseph I. Shapiro

We have observed recently that experimental renal failure in the rat is accompanied by increases in circulating concentrations of the cardiotonic steroid, marinobufagenin (MBG), and substantial cardiac fibrosis. We performed the following studies to examine whether MBG might directly stimulate cardiac fibroblast collagen production. In vivo studies were performed using the 5/6th nephrectomy model of experimental renal failure (PNx), MBG infusion (MBG), PNx after immunization against MBG, and concomitant PNx and adrenalectomy. Physiological measurements with a Millar catheter and immunohistochemistry were performed. In vitro studies were then pursued with cultured isolated cardiac fibroblasts. We observed that PNx and MBG increased MBG levels, blood pressure, heart size, impaired diastolic function, and caused cardiac fibrosis. PNx after immunization against MBG and concomitant PNx and adrenalectomy had similar blood pressure as PNx but less cardiac hypertrophy, diastolic dysfunction, and cardiac fibrosis. MBG induced increases in procollagen-1 expression by cultured cardiac fibroblasts at 1 nM concentration. These increases in procollagen expression were accompanied by increases in collagen translation and increases in procollagen-1 mRNA without any demonstrable increase in procollagen-1 protein stability. The stimulation of fibroblasts with MBG could be prevented by administration of inhibitors of tyrosine phosphorylation, Src activation, epidermal growth factor receptor transactivation, and N-acetyl cysteine. Based on these findings, we propose that MBG directly induces increases in collagen expression by fibroblasts, and we suggest that this may be important in the cardiac fibrosis seen with experimental renal failure.


Cell Biochemistry and Biophysics | 2006

The Na,K-ATPase Receptor Complex Its Organization and Membership

Sandrine V. Pierre; Zijian Xie

A major difference between the Na,K-ATPase ion pump and other P-type ATPases is its ability to bind cardiotonic steroids such as ouabain. Na,K-ATPase also interacts with many membrane and cytosolic proteins. In addition to their role in Na,K-ATPase regulation, it became apparent that some of the newly identified interactions are capable of organizing the Na,K-ATPase into various signaling complexes. This new function confers a ligand-like effect to cardiotonic steroids on cellular signal transduction. This article reviews these new developments and provides a comparison of Na,K-ATPase-mediated signal transduction with other receptors and ion transporters.


Journal of Cell Biology | 2008

Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase

Ting Cai; Haojie Wang; Yiliang Chen; Lijun Leo Liu; William T. Gunning; Luis Eduardo Menezes Quintas; Zijian Xie

Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool.

Collaboration


Dive into the Zijian Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiang Tian

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sankaridrug M. Periyasamy

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir Askari

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Liu

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexei Y. Bagrov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge