Zijun Zhou
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zijun Zhou.
Environmental Science and Pollution Research | 2015
Zijun Zhou; Changwen Du; Ting Li; Yazhen Shen; Yin Zeng; Jie Du; Jianmin Zhou
Biochar-modified polyacrylate-like polymers are promising waterborne polymer-based membrane coatings for controlled-release fertilizers. However, the effect of these membrane polymers on paddy soil is unknown. A soil incubation experiment was conducted using Fourier transform infrared photoacoustic spectroscopy to monitor the changes in the polymer-coated membranes in paddy soil, and Biolog EcoPlates and polymerase chain reaction-denaturing gradient gel electrophoresis were used to detect the effects of the membranes on soil bacterial community profiles. Compared to unmodified membranes, the biodegradation rate of the biochar-modified membrane was slower, and the membrane was more intact, which improved and guaranteed the controlled release of nutrients. Compared to the soil without membranes, the biochar-modified membranes, as well as unmodified ones, showed no significant impacts on the composition diversity of soil dominant bacterial community. The activity and functional diversity of soil culturable microbial community during the early stage of incubation were reduced by biochar-modified membranes due to the release of small amount of soluble organic materials but were both recovered in the 12th month of the incubation period. Therefore, the biochar-modified waterborne polyacrylate was environmentally friendly, demonstrating its potential both in the development of coated controlled-release fertilizers and in the utilization of crop residue.
Scientific Reports | 2015
Ting Li; Huoyan Wang; Jing Wang; Zijun Zhou; Jianmin Zhou
In response to addressing potassium (K) deficiency in soil and decreasing agricultural production costs, the potential of K-bearing phyllosilicate minerals that can be directly used as an alternative K source has been investigated using sodium tetraphenylboron (NaTPB) extraction and an intensive cropping experiment. The results showed that the critical value of K-release rate and leaf K concentration was 3.30 g kg−1 h−1 and 30.64 g (kg dry matter)−1, respectively under the experimental conditions. According to this critical value, the maximum amount of released K that could be utilized by a plant with no K deficiency symptoms was from biotite (27.80 g kg−1) and vermiculite (5.58 g kg−1), followed by illite, smectite and muscovite with 2.76, 0.88 and 0.49 g kg−1, respectively. Ryegrass grown on phlogopite showed K deficiency symptoms during the overall growth period. It is concluded that biotite and vermiculite can be directly applied as a promising and sustainable alternative to the use of classical K fertilizers, illite can be utilized in combination with soluble K fertilizers, whereas muscovite, phlogopite and smectite may not be suitable for plant growth. Further field experiments are needed to assess the use of these phyllosilicate minerals as sources of K fertilizer.
Scientific Reports | 2015
Zijun Zhou; Changwen Du; Ting Li; Yazhen Shen; Jianmin Zhou
Controlled-release fertilizers (CRF) use a controlled-release technology to enhance the nutrient use efficiency of crops. Many factors affect the release of nutrients from the waterborne polymer-coated CRF, but the effects of thermal post-treatments remain unclear. In this study, a waterborne polyacrylate-coated CRF was post-treated at different temperatures (30 °C, 60 °C, and 80 °C) and durations (2, 4, 8, 12, and 24 h) after being developed in the Wurster fluidized bed. To characterize the polyacrylate membrane, and hence to analyze the mechanism of nutrient release, Fourier transform mid-infrared spectroscopy, scanning electron microscopy, and atomic force microscopy were employed. The nutrient-release model of CRF post-treated at 30 °C was the inverse “L” curve, but an increased duration of the post-treatment had no effect. The nutrient-release model was “S” curve and nutrient-release period was enhanced at higher post-treatment temperatures, and increased post-treatment duration lengthened slowed nutrient release due to a more compact membrane and a smoother membrane surface as well as a promoted crosslinking action. CRF equipped with specified nutrient-release behaviors can be achieved by optimizing the thermal post-treatment parameters, which can contribute to the development and application of waterborne polymer-coated CRF and controlled-release technologies.
Journal of Soils and Sediments | 2017
Zijun Zhou; Hui Li; Chunlei Song; Xiuyun Cao; Yiyong Zhou
PurposeNitrogen (N) application in excess of assimilatory capacity for aquaculture ponds can lead to water-quality deterioration through ammonia accumulation with toxicity to fish. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) potentially process extra ammonium, so their abundance and diversity are of great ecological significance. This study aimed to reveal variations in communities of AOA and AOB as affected by aquaculture activities.Materials and methodsFrom June to September 2012, water and sediments were sampled monthly in three ponds feeding Mandarin fish in a suburb of Wuhan City, China. Molecular methods based on ammonia monooxygenase (amoA) gene were used to determine abundance and diversity of AOA and AOB in the sediments.Results and discussionThe pond with the highest fish stock had the highest nutrient loadings in terms of different forms of N and carbon (C) in both sediment and water. The abundance and diversity of AOB were significantly higher than those of AOA in the sediment. The AOB abundance showed a significantly positive relationship to concentration of soluble reactive phosphorus (SRP) in interstitial water, and both abundance and diversity of AOA were significantly negative to concentration of ammonium in interstitial water. Furthermore, AOA species affiliated to Nitrososphaera-like and Nitrosophaera Cluster was distinguishable from those observed in other aquaculture environments.ConclusionsNutrients in sediment were enriched by intensive aquaculture activity, among which organic N and C, together with ammonium and SRP, shaped the communities of ammonia oxidizers, with AOB dominating over AOA in terms of abundance and diversity.
Pedosphere | 2015
Chang-Wen Du; Jiao Wang; Zijun Zhou; Yazhen Shen; Jianmin Zhou
Ammonia (NH3) volatilization is one of the important pathways of nitrogen loss in alkaline soil, and the NH3 concentration in soil headspace is directly linked with the NH3 volatilization. Ammonia was characterized by Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) and two typical absorption bands in the region of 850–1200 cm−1 were observed, which could be used for the prediction of NH3 concentration in the soil headspace. An alkaline soil from North China was involved in the soil incubation, pot and field experiments under three fertilization treatments (control without N input (CK), urea and coated urea). Ammonia concentrations in the soil headspace were determined in each experiment. In the soil incubation experiment, the NH3 emissions were initiated by the N input, reached the highest concentration on day 2, and decreased to the level as measured in CK after 8 d, with significantly higher NH3 emissions in the urea treatment compared to coated urea treatment, especially during the first 4 d. The NH3 concentration in soil headspace of the pot experiment showed the similar dynamics as that in the incubation experiment; however, the NH3 concentration in the soil headspace in the field experiment demonstrated a significantly different emission pattern with those of the incubation and pot experiments, and there was a 4-d delay for the NH3 concentration. Therefore, the NH3 concentration in the incubation and pot experiments could not be directly used to model the real NH3 emission in the field due to the differences in fertilization method and application rate as well as soil temperature and soil disturbance. It was recommended that light irrigation in the second week after fertilization and involvement of controlled release coated urea could be used to significantly decrease N loss from the perspective of NH3 volatilization.
Scientific Reports | 2016
Ting Li; Huoyan Wang; Zijun Zhou; Xiaoqin Chen; Jianmin Zhou
A new grading system for plant-available potassium (K) in soils based on K release rate from soils and plant growth indices was established. In the study, fourteen different agricultural soils from the southern subtropical to the northern temperate zones in China were analyzed by both chemical extraction methods and exhaustive cropping techniques. Based on the change trends in plant growth indices, relative biomass yields of 70% and 50%, K-deficient coefficients of 35 and 22 under conventional exhaustive experiments, and tissue K concentrations of 40 g kg−1 and 15 g kg−1 under intensive exhaustive experiments were obtained as critical values that represent different change trends. In addition, the extraction method using 0.2 mol L−1 sodium tetraphenylboron (NaTPB) suggested soil K release rates of 12 mg kg−1 min−1 and 0.4 mg kg−1 min−1 as turning points that illustrated three different release trends. Thus, plant-available K in soils was classified into three categories: high available K, medium available K and low available K, and grading criteria and measurement methods were also proposed. This work has increased our understanding of soil K bioavailability and has direct application in terms of routine assessment of agriculture soils.
Science of The Total Environment | 2018
Jian Xiao; Siyang Wang; Zijun Zhou; Yao Zhang; Chunlei Song; Yiyong Zhou; Xiuyun Cao
The over-enrichment of lake waters with nitrogen (N) and phosphorus (P) has become a serious environmental problem, but modes of change in stoichiometry and enzymatic regeneration along trophic gradients are largely unknown. Seasonal variations in the kinetics of extracellular aminopeptidase (LAP) and alkaline phosphatase (AP), together with the composition of phytoplankton and concentrations of N and P, were examined from Jun 2013 to September 2014 in a Chinese shallow lake in which two basins had contrasting trophic states. The turbid basin had a significantly higher concentration of chlorophyll a and lower ratios of N to P. In parallel, the turnover time of organic N mediated by LAP (LAPT) was significantly shorter, and its maximum velocity (Vmax) was significantly higher compared to those in the clear basin. Considering data from both basins, there were linear decreases in N/P and the ratios between dissolved inorganic N and total N with an increasing trophic state index, coupled with a significantly positive relationship between N/P and LAPT. Additionally, with decreasing TN/TP, the Michaelis constant (Km) of the AP increased linearly, reducing the efficiency of P regeneration. In contrast, the Km value of LAP decreased, and Vmax increased, which enhanced N mineralization by simultaneously increasing the reaction velocity and improving the affinity for substrate. Additionally, the Km value of LAP was significantly related to that of AP and the ammonium concentration. Thus, substrate affinity acted as a key factor modifying the pathways of enzymatic degradation of organic N and P according to their stoichiometry in the water column. Phytoplankton composition was directly linked to LAPT. Overall, this study seemed to be the first to connect a stoichiometric shift of N and P with kinetics of extracellular enzymes responsible for their regeneration along trophic gradients, presenting an additional pathway to overcome nitrogen deficiency in eutrophic lakes.
Environmental Science & Technology | 2018
Siyang Wang; Jian Xiao; Lingling Wan; Zijun Zhou; Zhicong Wang; Chunlei Song; Yiyong Zhou; Xiuyun Cao
Dolichospermum flos-aquae (formerly Anabaena flos-aquae) is a diazotrophic cyanobacterium causing harmful blooms worldwide, which is partly attributed to its capacity to compete for nitrogen (N) and phosphorus (P). Preventing the blooms by reducing P alone or both N and P has caused debate. To test the effects alone and together on the growth of cyanobacteria, we performed culture experiments in different eutrophication scenarios. N2 fixation in terms of heterocyst density, nitrogenase activity and nifH expression increased significantly in P-replete cultures, suggesting that P enrichment facilitates N2 fixation. Correspondingly, the expression of genes involved in P uptake, e.g., those involved in P-transport ( pstS) and the hydrolysis of phosphomonoesters ( phoD), was upregulated in P-deficient cultures. Interestingly, N addition enhanced not only the expression of these genes but also polyphosphate formation and alkaline phosphatase activity in P-deficient cultures relative to the P-replete cultures, as evidenced by qualitative (enzyme-labeled fluorescence) and quantitative (fluorogenic spectrophotometry) measurements. Furthermore, after N addition, cell activity and growth increased in the P-deficient cultures, underscoring the risk of N enrichment in P-limited systems. The eco-physiological responses shown here help further our understanding of the mechanism of N and P colimitation and underscore the importance of dual N and P reduction in controlling cyanobacterial blooms.
Bioresource Technology | 2016
Zijun Zhou; Peng Xu; Xiuyun Cao; Yiyong Zhou; Chunlei Song
Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters.
Soil Biology & Biochemistry | 2013
Yirong Su; L. Wu; Zijun Zhou; Yuqian Liu; Yuanming Zhang