Zikiar Alvin
Howard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zikiar Alvin.
Journal of Cardiovascular Pharmacology | 2010
Thomas J. LaRocca; Martina Schwarzkopf; Perry Altman; Shihong Zhang; Achla Gupta; Ivone Gomes; Zikiar Alvin; Hunter C. Champion; Georges E. Haddad; Roger J. Hajjar; Lakshmi A. Devi; Alison D. Schecter; Sima T. Tarzami
Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation, metastasis, and embryonic development. We previously demonstrated a nonchemotactic role for one such chemokine pair, stromal cell-derived factor-1α and its G-protein coupled receptor, CXCR4. Stromal cell-derived factor-1/CXCR4 are expressed on cardiac myocytes and have direct consequences on cardiac myocyte physiology by inhibiting contractility in response to the nonselective β-adrenergic receptor (βAR) agonist, isoproterenol. As a result of the importance of β-adrenergic signaling in heart failure pathophysiology, we investigated the underlying mechanism involved in CXCR4 modulation of βAR signaling. Our studies demonstrate activation of CXCR4 by stromal cell-derived factor-1 leads to a decrease in βAR-induced PKA activity as assessed by cAMP accumulation and PKA-dependent phosphorylation of phospholamban, an inhibitor of SERCA2a. We determined CXCR4 regulation of βAR downstream targets is β2AR-dependent. We demonstrated a physical interaction between CXCR4 and β2AR as determined by coimmunoprecipitation, confocal microscopy, and BRET techniques. The CXCR4-β2AR interaction leads to G-protein signal modulation and suggests the interaction is a novel mechanism for regulating cardiac myocyte contractility. Chemokines are physiologically and developmentally relevant to myocardial biology and represent a novel receptor class of cardiac modulators. The CXCR4-β2AR complex could represent a hitherto unknown target for therapeutic intervention.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Leyla Teos; Aiqiu Zhao; Zikiar Alvin; Graham G. Laurence; Chuanfu Li; Georges E. Haddad
The potassium channels I(K) and I(K1), responsible for the action potential repolarization and resting potential respectively, are altered during cardiac hypertrophy. The activation of insulin-like growth factor-I (IGF-I) during hypertrophy may affect channel activity. The aim was to examine the modulatory effects of IGF-I on I(K) and I(K1) through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways during hypertrophy. With the use of specific inhibitors for ERK1/2 (PD98059), p38 MAPK (SB203580) and PI3K/Akt (LY294002), Western blot and whole cell patch-clamp were conducted on sham and aorto-caval shunt-induced hypertrophy adult rat myocytes. Basal activation levels of MAPKs and Akt were increased during hypertrophy. Acute IGF-I (10(-8) M) enhanced basal activation levels of these kinases in normal hearts but only those of Akt in hypertrophied ones. I(K) and I(K1) activities were lowered by IGF-I. Inhibition of ERK1/2, p38 MAPK, or Akt reduced basal I(K) activity by 70, 32, or 50%, respectively, in normal cardiomyocytes vs. 53, 34, or 52% in hypertrophied ones. However, basal activity of I(K1) was reduced by 45, 48, or 45% in the former vs. 63, 43, or 24% in the latter. The inhibition of either MAPKs or Akt alleviated IGF-I effects on I(K) and I(K1). We conclude that basal I(K) and I(K1) are positively maintained by steady-state Akt and ERK activities. K+ channels seem to be regulated in a dichotomic manner by acutely stimulated MAPKs and Akt. Eccentric cardiac hypertrophy may be associated with a change in the regulation of the steady-state basal activities of K+ channels towards MAPKs, while that of the acute IGF-I-stimulated ones toward Akt.
International Journal of Cell Biology | 2012
Richard M. Millis; Zikiar Alvin; Aiqiu Zhao; Georges E. Haddad
Previous studies suggest that sarcolemmal potassium currents play important roles in cardiac hypertrophy. IGF-1 contributes to cardiac hypertrophy via activation of PI3K/Akt signaling. However, the relationships between IGF-1, PI3K/Akt signaling and sarcolemmal potassium currents remain unknown. Therefore, we tested the hypothesis that IGF-1 and PI3K/Akt signaling, independently, decrease sarcolemmal potassium currents in cardiac myocytes of neonatal rats. We compared the delayed outward rectifier (IK) and the inward rectifier (IK) current densities resulting from IGF-1 treatments to those resulting from simulation of PI3K/Akt signaling using adenoviral (Ad) BD110 and wild-type Akt and to those resulting from inhibition of PI3K signaling by LY294002. Ad.BD110 and Ad.Akt decreased IK and these decrements were attenuated by LY 294002. The IGF-1 treatments decreased both IK and IK1 but only the IK decrement was attenuated by LY294002. These findings demonstrate that IGF-1 may contribute to cardiac hypertrophy by PI3K/Akt signal transduction mechanisms in neonatal rat cardiomyocytes. Failure of LY294002 to effectively antagonize IGF-1 induced decrements in IK1 suggests that a signal pathway adjunct to PI3K/Akt contributes to IGF-1 protection against arrhythmogenesis in these myocytes. Our findings imply that sarcolemmal outward and inward rectifier potassium channels are substrates for IGF-1/PI3K/Akt signal transduction molecules.
Medical Science Monitor | 2011
Zikiar Alvin; Graham G. Laurence; Bernell R. Coleman; Aiqiu Zhao; Majd Hajj-MoussaM. Hajj-Moussa; Georges E. Haddad
Summary Background Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Material/Methods Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Results Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10−6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Conclusions Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.
International Journal of Cell Biology | 2011
Zikiar Alvin; Richard M. Millis; Wissam Hajj-Mousssa; Georges E. Haddad
ATP-sensitive potassium channels (KATP) protect the myocardium from hypertrophy induced by pressure-overloading. In this study, we determined the effects of these channels in volume-overloading. We compared the effects of a KATP agonist and a KATP antagonist on sarcolemmal transmembrane current density (pA/pF) clamped at 20 mV increments of membrane potential from −80 to +40 mV in ventricular cardiac myocytes. The basal outward potassium pA/pF in myocytes of volume-overloaded animals was significantly smaller than that in the myocytes of sham-operated controls. Treatment of the control myocytes with the KATP agonist cromakalim increased pA/pF significantly. This increase was blocked by the KATP antagonist glibenclamide. Treatment of the hypertrophied myocytes from volume-overloaded animals with cromakalim and in the presence and absence of glibenclamide did not change pA/pF significantly. These findings suggest that eccentrically hypertrophied cardiac myocytes from volume-overloading may be unresponsive to specific activation/inactivation of KATP and that dysfunctional KATP may fail to protect the myocardium from left ventricular hypertrophy associated with volume-overloading.
Ethnicity & Disease | 2010
Aiqiu Zhao; Zikiar Alvin; Graham G. Laurence; Chuanfu Li; Georges E. Haddad
The FASEB Journal | 2010
Valerie Cousins; Zikiar Alvin; Aiqiu Zhao; Georges E. Haddad
The FASEB Journal | 2010
Aiqiu Zhao; Zikiar Alvin; Valerie Cousins; Georges E. Haddad
The FASEB Journal | 2009
Zikiar Alvin; Aiqiu Zhao; Rong Duan; Graham G. Laurence; Leyla Teos; Bernell R. Coleman; Georges E. Haddad
The FASEB Journal | 2008
Georges E. Haddad; Zikiar Alvin; Graham G. Laurence; Leyla Teos