Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zili Xie is active.

Publication


Featured researches published by Zili Xie.


Cellular and Molecular Life Sciences | 2015

Endogenous animal toxin-like human β-defensin 2 inhibits own K+ channels through interaction with channel extracellular pore region

Weishan Yang; Jing Feng; Fang Xiang; Zili Xie; Guoyi Zhang; Jean-Marc Sabatier; Zhijian Cao; Wenxin Li; Zongyun Chen; Yingliang Wu

Human potassium channels are widely inhibited by peptide toxins from venomous animals. However, no human endogenous peptide inhibitor has been discovered so far. In this study, we demonstrate for the first time using electrophysiological techniques, that endogenous human β–defensin 2 (hBD2) is able to selectively and dose-dependently inhibit the human voltage-gated Kv1.3 channel at picomolar peptide concentration. The co-immunoprecipitation assays further supported the selective binding of hBD2 to Kv1.3 channel. Using mutagenesis experiments, we found that the outer pore domain of Kv1.3 channel was the binding site of hBD2, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin inhibitors. The hBD2 was able to suppress IL-2 production through inhibition of Kv1.3 channel currents in human Jurkat cells, which was further confirmed by the lack of hBD2 activity on IL-2 production after Kv1.3 knockdown in these cells. More interestingly, hBD2 was also found to efficiently inhibit Kv1.3 channel currents and suppress IL-2 production in both human primary CD3+ T cells and peripheral mononuclear cells from either healthy donors or psoriasis patients. Our findings not only evidenced hBD2 as the first characterized endogenous peptide inhibitor of human potassium channels, but also paved a promising avenue to investigate newly discovered function of hBD2 as Kv1.3 channel inhibitor in the immune system and other fields.


Scientific Reports | 2015

Toxin acidic residue evolutionary function-guided design of de novo peptide drugs for the immunotherapeutic target, the Kv1.3 channel.

Zongyun Chen; Youtian Hu; Jing Hong; Jun Hu; Weishan Yang; Fang Xiang; Fan Yang; Zili Xie; Zhijian Cao; Wenxin Li; Donghai Lin; Yingliang Wu

During the long-term evolution of animal toxins acting on potassium channels, the acidic residues can orientate the toxin binding interfaces by adjusting the molecular polarity. Based on the evolutionary function of toxin acidic residues, de novo peptide drugs with distinct binding interfaces were designed for the immunotherapeutic target, the Kv1.3 channel. Using a natural basic toxin, BmKTX, as a template, which contains 2 acidic residues (Asp19 and Asp33), we engineered two new peptides BmKTX-19 with 1 acidic residue (Asp33), and BmKTX-196 with 2 acidic residues (Asp6 and Asp33) through only adjusting acidic residue distribution for reorientation of BmKTX binding interface. Pharmacological experiments indicated that BmKTX-19 and BmKTX-196 peptides were specific inhibitors of the Kv1.3 channel and effectively suppressed cytokine secretion. In addition to the structural similarity between the designed and native peptides, both experimental alanine-scanning mutagenesis and computational simulation further indicated that the binding interface of wild-type BmKTX was successfully reoriented in BmKTX-19 and BmKTX-196, which adopted distinct toxin surfaces as binding interfaces. Together, these findings indicate not only the promising prospect of BmKTX-19 and BmKTX-196 as drug candidates but also the desirable feasibility of the evolution-guided peptide drug design for discovering numerous peptide drugs for the Kv1.3 channel.


Toxins | 2015

Plectasin, First Animal Toxin-Like Fungal Defensin Blocking Potassium Channels through Recognizing Channel Pore Region

Fang Xiang; Zili Xie; Jing Feng; Weishan Yang; Zhijian Cao; Wenxin Li; Zongyun Chen; Yingliang Wu

The potassium channels were recently found to be inhibited by animal toxin-like human β-defensin 2 (hBD2), the first defensin blocker of potassium channels. Whether there are other defensin blockers from different organisms remains an open question. Here, we reported the potassium channel-blocking plectasin, the first defensin blocker from a fungus. Based on the similar cysteine-stabilized alpha-beta (CSαβ) structure between plectasin and scorpion toxins acting on potassium channels, we found that plectasin could dose-dependently block Kv1.3 channel currents through electrophysiological experiments. Besides Kv1.3 channel, plectasin could less inhibit Kv1.1, Kv1.2, IKCa, SKCa3, hERG and KCNQ channels at the concentration of 1 μΜ. Using mutagenesis and channel activation experiments, we found that outer pore region of Kv1.3 channel was the binding site of plectasin, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin blockers. Together, these findings not only highlight the novel function of plectasin as a potassium channel inhibitor, but also imply that defensins from different organisms functionally evolve to be a novel kind of potassium channel inhibitors.


Journal of Biological Chemistry | 2016

Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin

Lanxia Meng; Zili Xie; Qian Zhang; Yang Li; Fan Yang; Zongyun Chen; Wenxin Li; Zhijian Cao; Yingliang Wu

The structural similarity between defensins and scorpion neurotoxins suggests that they might have evolved from a common ancestor. However, there is no direct experimental evidence demonstrating a functional link between scorpion neurotoxins and defensins. The scorpion defensin BmKDfsin4 from Mesobuthus martensii Karsch contains 37 amino acid residues and a conserved cystine-stabilized α/β structural fold. The recombinant BmKDfsin4, a classical defensin, has been found to have inhibitory activity against Gram-positive bacteria such as Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus as well as methicillin-resistant Staphylococcus aureus. Interestingly, electrophysiological experiments showed that BmKDfsin4,like scorpion potassium channel neurotoxins, could effectively inhibit Kv1.1, Kv1.2, and Kv1.3 channel currents, and its IC50 value for the Kv1.3 channel was 510.2 nm. Similar to the structure-function relationships of classical scorpion potassium channel-blocking toxins, basic residues (Lys-13 and Arg-19) of BmKDfsin4 play critical roles in peptide-Kv1.3 channel interactions. Furthermore, mutagenesis and electrophysiological experiments demonstrated that the channel extracellular pore region is the binding site of BmKDfsin4, indicating that BmKDfsin4adopts the same mechanism for blocking potassium channel currents as classical scorpion toxins. Taken together, our work identifies scorpion BmKDfsin4 as the first invertebrate defensin to block potassium channels. These findings not only demonstrate that defensins from invertebrate animals are a novel type of potassium channel blockers but also provide evidence of a functional link between defensins and neurotoxins.


The FASEB Journal | 2015

Human α-defensins are immune-related Kv1.3 channel inhibitors: new support for their roles in adaptive immunity

Zili Xie; Jing Feng; Weishan Yang; Fang Xiang; Fan Yang; Yonghui Zhao; Zhijian Cao; Wenxin Li; Zongyun Chen; Yingliang Wu

Defensins form a major family of antimicrobial peptides. Recently, human β‐defensin 2 and fungal plectasin were shown to be immune‐related potassium voltage‐gated channel subfamily A member 3 (Kv1.3) channel inhibitors. This work continued to show that the human α‐defensins human neutrophil peptide (HNP) 1 and human defensin (HD) 5 are selective Kv1.3 channel inhibitors with 50% inhibition concentration values of 102.0 ± 30.3 nM and 2.2 ± 0.2 μM, respectively. Furthermore, HNP1 was found to inhibit Kv1.3 currents and IL‐2 secretion in human CD3+ T cells. Despite the structural similarity between HNP1 and HD5, HNP1 could simultaneously bind to the S1‐S2 linker and the pore region of the Kv1.3 channel as both a toxinlike blocker and a novel modifier, whereas HD5 could only bind to the channel pore region as a toxinlike blocker. As a channel modifier, HNP1 could shift the conductance‐voltage relationship curve of the Kv1.3 channel by ∼9.5 mV in the positive direction and could increase the time constant for channel activation through the electrostatic repulsion between the cationic HNP1 anchored in the S1‐S2 linker and the positively charged S4 domain of the Kv1.3 channel. Together, these findings reveal that human α‐defensins are novel endogenous inhibitors of Kv1.3 channels with distinct interaction mechanisms, which facilitates future research into their adaptive immune functions.—Xie, Z., Feng, J., Yang, W., Xiang, F., Yang, F., Zhao, Y., Cao, Z., Li, W., Chen, Z., Wu, Y. Human α‐defensins are immune‐related Kv1.3 channel inhibitors: new support for their roles in adaptive immunity. FASEB J. 29, 4324‐4333 (2015). www.fasebj.org


Journal of Biological Chemistry | 2015

Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation

Jing Feng; Weishan Yang; Zili Xie; Fang Xiang; Zhijian Cao; Wenxin Li; Hongzhen Hu; Zongyun Chen; Yingliang Wu

Background: The functional role of the Kv channel S1-S2 linker remains unclear. Results: The S1-S2 linker-hBD2 interaction modifies Kv1.3 channel activation through electrostatic repulsion between positively charged hBD2 and the channel S4 segment. Conclusion: The Kv1.3 channel S1-S2 linker is a novel peptide-binding site. Significance: These findings could define the function of S1-S2 linkers in Kv channel gating modification among different Kv channels. Among the three extracellular domains of the tetrameric voltage-gated K+ (Kv) channels consisting of six membrane-spanning helical segments named S1–S6, the functional role of the S1-S2 linker still remains unclear because of the lack of a peptide ligand. In this study, the Kv1.3 channel S1-S2 linker was reported as a novel receptor site for human β-defensin 2 (hBD2). hBD2 shifts the conductance-voltage relationship curve of the human Kv1.3 channel in a positive direction by nearly 10.5 mV and increases the activation time constant for the channel. Unlike classical gating modifiers of toxin peptides from animal venoms, which generally bind to the Kv channel S3-S4 linker, hBD2 only targets residues in both the N and C termini of the S1-S2 linker to influence channel gating and inhibit channel currents. The increment and decrement of the basic residue number in a positively charged S4 sensor of Kv1.3 channel yields conductance-voltage relationship curves in the positive direction by ∼31.2 mV and 2–4 mV, which suggests that positively charged hBD2 is anchored in the channel S1-S2 linker and is modulating channel activation through electrostatic repulsion with an adjacent S4 helix. Together, these findings reveal a novel peptide ligand that binds with the Kv channel S1-S2 linker to modulate channel activation. These findings also highlight the functional importance of the Kv channel S1-S2 linker in ligand recognition and modification of channel activation.


Peptides | 2015

Engineering a peptide inhibitor towards the KCNQ1/KCNE1 potassium channel (IKs)

Youtian Hu; Jing Chen; Bin Wang; Weishan Yang; Chuangeng Zhang; Jun Hu; Zili Xie; Zhijian Cao; Wenxin Li; Yingliang Wu; Zongyun Chen

The KCNQ1/KCNE1 channel (IKs) plays important roles in the physiological and pathological process of heart, but no potent peptide acting on this channel has been reported. In this work, we found that the natural scorpion venom hardly inhibited KCNQ1/KCNE1 channel currents. Based on this observation, we attempted to use three natural scorpion toxins ChTX, BmKTX and OmTx2 with two different structural folds as templates to engineer potent peptide inhibitors towards the KCNQ1/KCNE1 channel. Pharmacological experiments showed that when we screen with 1μM MT2 peptide, an analog derived from BmKTX toxin, KCNQ1/KCNE1 channel currents could be effectively inhibited. Concentration-dependent experiments showed that MT2 inhibited the KCNQ1/KCNE1 channel with an IC50 value of 4.6±1.9μM. The mutagenesis experiments indicated that MT2 peptide likely used Lys26 residue to interact with the KCNQ1/KCNE1 channel. With MT2 as a new template, we further designed a more potent MT2-2 peptide, which selectively inhibited the KCNQ1/KCNE1 channel with an IC50 of 1.51±0.62μM. Together, this work provided a much potent KCNQ1/KCNE1 channel peptide inhibitor so far, and highlighted the role of molecular strategy in developing potent peptide inhibitors for the natural toxin-insensitive orphan receptors.


Toxins | 2016

The Scorpion Toxin Analogue BmKTX-D33H as a Potential Kv1.3 Channel-Selective Immunomodulator for Autoimmune Diseases

Fang Ye; Youtian Hu; Weiwei Yu; Zili Xie; Jun Hu; Zhijian Cao; Wenxin Li; Yingliang Wu

The Kv1.3 channel-acting scorpion toxins usually adopt the conserved anti-parallel β-sheet domain as the binding interface, but it remains challenging to discover some highly selective Kv1.3 channel-acting toxins. In this work, we investigated the pharmacological profile of the Kv1.3 channel-acting BmKTX-D33H, a structural analogue of the BmKTX scorpion toxin. Interestingly, BmKTX-D33H, with its conserved anti-parallel β-sheet domain as a Kv1.3 channel-interacting interface, exhibited more than 1000-fold selectivity towards the Kv1.3 channel as compared to other K+ channels (including Kv1.1, Kv1.2, Kv1.7, Kv11.1, KCa2.2, KCa2.3, and KCa3.1). As expected, BmKTX-D33H was found to inhibit the cytokine production and proliferation of both Jurkat cells and human T cells in vitro. It also significantly improved the delayed-type hypersensitivity (DTH) responses, an autoreactive T cell-mediated inflammation in rats. Amino acid sequence alignment and structural analysis strongly suggest that the “evolutionary” Gly11 residue of BmKTX-D33H interacts with the turret domain of Kv1 channels; it appears to be a pivotal amino acid residue with regard to the selectivity of BmKTX-D33H towards the Kv1.3 channel (in comparison with the highly homologous scorpion toxins). Together, our data indicate that BmKTX-D33H is a Kv1.3 channel–specific blocker. Finally, the remarkable selectivity of BmKTX-D33H highlights the great potential of evolutionary-guided peptide drug design in future studies.


Toxicon | 2016

Human beta-defensin 1, a new animal toxin-like blocker of potassium channel.

Jing Feng; Zili Xie; Weishan Yang; Yonghui Zhao; Fang Xiang; Zhijian Cao; Wenxin Li; Zongyun Chen; Yingliang Wu

The discovery of human β-defensin 2 (hBD2), as a Kv1.3 channel inhibitor with the unique molecular mechanism and novel immune modulatory function, suggests that human β-defensins are a novel class of channel ligands. Here, the function and mechanism of the human β-defensin 1 (hBD1) binding to potassium channels was investigated. Based on the structural similarity between hBD1 and Kv1.3 channel-sensitive hBD2, hBD1 was found to selectively inhibit human and mouse Kv1.3 channels with IC50 values of 11.8 ± 3.1 μM and 13.2 ± 4.0 μM, respectively. Different from hBD2 modifying Kv1.3 channel activation and increasing activation time constant, hBD1 did not affect the activation feature of both human and mouse Kv1.3 channels. In comparison with hBD2 simultaneously interacting with the extracellular S1-S2 linker and pore region of Kv1.3 channel, the chimeric channel and mutagenesis experiments showed that hBD1 only bound to the extracellular pore region of Kv1.3 channel instead of extracellular S1-S2 linker or S3-S4 linker. Together, these findings enhance knowledge of hBD1 as a new immune-related Kv1.3 channel blocker and highlight the major functional differences between hBD1 and hBD2 to explore in future research.


PLOS ONE | 2016

Peptidomimetic Star Polymers for Targeting Biological Ion Channels.

Rong Chen; Derong Lu; Zili Xie; Jing Feng; Zhongfan Jia; Junming Ho; Michelle L. Coote; Yingliang Wu; Michael J. Monteiro; Shin-Ho Chung

Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery.

Collaboration


Dive into the Zili Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge