Ziliang Zheng
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ziliang Zheng.
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2013
Ziliang Zheng; Tamer Badawy; Naeim A. Henein; Eric Sattler
Abstract : This paper investigates the physical and chemical ignition delay (ID) periods in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT was used to determine the Derived Cetane Number (DCN) according to ASTM D6890-10a standards. The fuels tested were ultra low sulfur diesel (ULSD), jet propellant-8 (JP-8), two synthetic fuels of Sasol IPK and F-T SPK (S-8). A comparison was made between the DCN and cetane number (CN) determined according to ASTM-D613 standards. Tests were conducted under steady state conditions at a constant pressure of 21 bar, and various air temperatures ranging from 778 K to 848 K. The rate of heat release (RHR) was calculated from the measured pressure trace and a detailed analysis of the RHR trace was made particularly for the autoignition process. Tests were conducted to determine the physical and chemical delay periods by comparing results obtained from two tests. In the first test, the fuel was injected into air according to ASTM standards. In the second test, the fuel was injected into nitrogen. The point at which the two resultant pressure traces separated was considered to be the end of the physical delay period. The effects of the charge temperature on the total ID as defined in ASTM D6890-10a standards, as well as on the physical and chemical delays were determined. It was noticed that the physical delay represented a significant part of the total ID over all the air temperatures covered in this investigation. Arrhenius plots were developed to determine the apparent activation energy for each fuel using different IDs. The first was based on the total ID measured according to ASTM standards. The second was the chemical delay determined in this investigation. The activation energy calculated from the total ID showed higher values for lower CN fuels except Sasol IPK.
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2014
Ziliang Zheng; Tamer Badawy; Naeim A. Henein; Eric Sattler; Nicholas Johnson
This paper investigates the effect of a cetane improver on the autoignition characteristics of Sasol IPK in the combustion chamber of the Ignition Quality Tester (IQT). The fuel tested was Sasol IPK with a Derived Cetane Number (DCN) of 31, treated with different percentages of Lubrizol 8090 cetane improver ranging from 0.1% to 0.4%. Tests were conducted under steady state conditions at a constant charging pressure of 21 bar. The charge air temperature before fuel injection varied from 778 to 848 K. Accordingly, all the tests were conducted under a constant charge density. The rate of heat release was calculated and analyzed in details, particularly during the autoignition period.In addition, the physical and chemical delay periods were determined by comparing the results of two tests. The first was conducted with fuel injection into air according to ASTM standards where combustion occurred. In the second test, the fuel was injected into the chamber charged with nitrogen. The physical delay is defined as the period of time from start of injection (SOI) to point of inflection (POI), and the chemical delay is defined as the period of time from POI to start of combustion (SOC). Both the physical and chemical delay periods were determined under different charge temperatures. The cetane improver was found to have an effect only on the chemical ID period. In addition, the effect of the cetane improver on the apparent activation energy of the global combustion reactions was determined. The results showed a linear drop in the apparent activation energy with the increase in the percentage of the cetane improver. Moreover, the low temperature (LT) regimes were investigated and found to be presented in base fuel, as well as cetane improver treated fuels.Copyright
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015
Umashankar Joshi; Ziliang Zheng; Amit Shrestha; Naeim A. Henein; Eric Sattler
The auto-ignition process plays a major role in the combustion, performance, fuel economy and emission in diesel engines. The auto-ignition quality of different fuels has been rated by its cetane number (CN) determined in the CFR engine, according to ASTM D613. More recently, the Ignition Quality Tester (IQT), a constant volume vessel, has been used to determine the derived cetane number (DCN) to avoid the elaborate, time consuming and costly engine tests, according to ASTM D6890. The ignition delay period in these two standard tests and many investigations has been considered to be the time period between start of injection (SOI) and start of combustion (SOC). The ignition delay (ID) values determined in different investigations can vary due to differences in instrumentation and definitions. This paper examines the different definitions and the parameters that effect ID period. In addition the activation energy dependence on the ID definition is investigated. Furthermore, results of an experimental investigation in a single-cylinder research diesel engine will be presented while the charge density is kept constant during the ID period. The global activation energy is determined and its sensitivity to the charge temperature is examined.Copyright
SAE International Journal of Fuels and Lubricants | 2014
Amit Shrestha; Umashankar Joshi; Ziliang Zheng; Tamer Badawy; Naeim A. Henein; Eric Sattler; Peter Schihl
Abstract : Experimental Validation: At the test conditions analyzed, the two-component S2 surrogate fairly reproduced the following characteristics of the target JP-8: -Ignition delays -Pressure, RHR, mass-averaged gas temperature -Engine-out emissions (CO, HC, NOX), with an exception of the absolute PM values. 3D CFD Simulation: -The simulation results were in fairly good agreement with the experimental data for the surrogate. The two-component S2 surrogate could be a reasonable choice for its use in further investigations on the target JP-8.
ASME 2011 Internal Combustion Engine Division Fall Technical Conference, ICEF 2011 | 2011
Chandrasekharan Jayakumar; Ziliang Zheng; Umashankar Joshi; Walter Bryzik; Naeim A. Henein; Eric Sattler
This paper investigates the effect of air inlet temperature on the auto-ignition of fuels that have different CN and volatility in a single cylinder diesel engine. The inlet air temperature is varied over a range of 30°C to 110°C. The fuels used are ultra-low-sulfur-diesel (ULSD), JP-8 (two blends with CN 44.1 & 31) and F-T SPK. Detailed analysis is made of the rate of heat release during the ignition delay period, to determine the effect of fuel volatility and CN on the auto-ignition process. A STAR-CD CFD model is applied to simulate the spray behavior and gain more insight into the processes that immediately follow the fuel injection including evaporation, start of exothermic reactions and the early stages of combustion. The mole fractions of different species are determined during the ignition delay period and their contribution in the auto-ignition process is examined. Arrhenius plots are developed to calculate the global activation energy for the auto-ignition reactions of these fuels. Correlations are developed for the ID and the mean air temperature and pressure.Copyright
ASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013 | 2013
Ziliang Zheng; Tamer Badawy; Naeim A. Henein; Eric Sattler; Nicholas Johnson
This paper investigates the effect of a cetane improver on the autoignition characteristics of Sasol IPK in the combustion chamber of the Ignition Quality Tester (IQT). The fuel tested was Sasol IPK with a Derived Cetane Number (DCN) of 31, treated with different percentages of Lubrizol 8090 cetane improver ranging from 0.1% to 0.4%. Tests were conducted under steady state conditions at a constant charging pressure of 21 bar. The charge air temperature before fuel injection varied from 778 to 848 K. Accordingly, all the tests were conducted under a constant charge density. The rate of heat release was calculated and analyzed in details, particularly during the autoignition period.In addition, the physical and chemical delay periods were determined by comparing the results of two tests. The first was conducted with fuel injection into air according to ASTM standards where combustion occurred. In the second test, the fuel was injected into the chamber charged with nitrogen. The physical delay is defined as the period of time from start of injection (SOI) to point of inflection (POI), and the chemical delay is defined as the period of time from POI to start of combustion (SOC). Both the physical and chemical delay periods were determined under different charge temperatures. The cetane improver was found to have an effect only on the chemical ID period. In addition, the effect of the cetane improver on the apparent activation energy of the global combustion reactions was determined. The results showed a linear drop in the apparent activation energy with the increase in the percentage of the cetane improver. Moreover, the low temperature (LT) regimes were investigated and found to be presented in base fuel, as well as cetane improver treated fuels.Copyright
ASME 2014 Internal Combustion Engine Division Fall Technical Conference, ICEF 2014 | 2014
Ziliang Zheng; Umashankar Joshi; Naeim A. Henein; Eric Sattler
Sasol IPK is a coal-derived synthetic fuel under consideration as a blending stock with JP-8 for use in military ground vehicles. Since Sasol IPK is a low ignition quality fuel with Derived Cetane Number (DCN) of 31, there is a need to improve its ignition quality. This paper investigates the effect of adding different amounts of Lubrizol 8090 cetane improver to Sasol IPK on increasing its DCN. The experimental investigation was conducted in a single-cylinder research type diesel engine. The engine is equipped with a common rail injection system and an open Engine Control Unit (ECU). Experiments covered different injection pressures and intake air temperatures. Analysis of test results was made to determine the effect of cetane improver percentage in the coal-derived Sasol IPK blend on autoignition, combustion and emissions of carbon monoxide (CO), total unburned hydrocarbon (HC), oxides of nitrogen (NOx), and particulate matter (PM). In addition, the effect of cetane improver on the apparent activation energy of the global autoignition reactions was determined.Copyright
Volume 1: Large Bore Engines; Advanced Combustion; Emissions Control Systems; Instrumentation, Controls, and Hybrids | 2013
Amit Shrestha; Ziliang Zheng; Tamer Badawy; Naeim A. Henein
Injection rate shaping is a method used to control the instantaneous mass flow rate of the fuel during an injection event. The rate at which the fuel is delivered affects the composition of the combustible mixture and its distribution in the combustion chamber, thereby has an impact on the combustion process in the diesel engine. This paper investigates the effects of five different types of injection rate shapes on diesel engine autoignition, combustion, and engine-out emission trends using a three-dimensional computational simulation approach. For this purpose, an n-heptane fuel model is utilized. Initially, a tophat rate-shape, characterized by the constant mass flow rate of the fuel, is assumed to represent the actual injection profile of an actual engine. Then, in order to develop sufficient confidence in the simulation predictions, this assumption together with the calibrated CFD models are validated by reproducing the cylinder gas pressure, the rate of heat release, and engine-out emissions trends for two sets of engine operating conditions. Later, using all the rate shapes the investigation is conducted for one test point considering two different cases of fuel injection: Case 1 - same SOI and duration of injection (DOI), and Case 2 - same combustion phasing and DOI.The results obtained from the computational analysis show that the injection rate shape affects the autoignition, combustion, and emissions of a diesel engine. It is observed that the rate shapes, characterized by high injection rates at the beginning of the injection event, enhance the formation of negative temperature coefficient (NTC) regime. Therefore, the mole fractions of different species are determined during the NTC regime in order to examine the processes relevant to the formation of the NTC regimes for these rate shapes. Further, for the same SOI and DOI case, significant differences in the ignition delays between each rate shapes are observed. The maximum deviation of the ignition delay from the reference tophat is found to be 37%. Furthermore, the paper highlights the differences in the cylinder gas pressure, gas temperature, and rate of heat release due to different fuel delivery rates of different rate shapes. Finally, the comparison of the engine-out emissions for different rate shapes for both the cases of injection are presented and discussed in detail.Copyright
SAE International Journal of Fuels and Lubricants | 2014
Amit Shrestha; Ziliang Zheng; Tamer Badawy; Naeim A. Henein; Peter Schihl
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2015
Ziliang Zheng; Umashankar Joshi; Naeim A. Henein; Eric Sattler