Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziling Mao is active.

Publication


Featured researches published by Ziling Mao.


Molecules | 2012

Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities

Xiangjie Meng; Ziling Mao; Liang Xu; Lingyun Zhong; Youliang Peng; Ligang Zhou; Mingan Wang

The endophytic fungus Hyalodendriella sp. Ponipodef12 was isolated from the hybrid ‘Neva’ of Populus deltoides Marsh × P. nigra L. In this study, four benzopyranones were isolated from the ethyl acetate extract of Hyalodendriella sp. Ponipodef12, and identified as palmariol B (1), 4-hydroxymellein (2), alternariol 9-methyl ether (3), and botrallin (4) by means of physicochemical and spectroscopic analysis. All the compounds were evaluated for their antibacterial, antifungal, antinematodal and acetylcholinesterase inhibitory activities. 4-Hydroxymellein (2) exhibited stronger antibacterial activity than the other compounds. Palmariol B (1) showed stronger antimicrobial, antinematodal and acetylcholinesterase inhibitory activities than alternariol 9-methyl ether (3) which indicated that the chlorine substitution at position 2 may contribute to its bioactivity. The results indicate the potential of this endophytic fungus as a source of bioactive benzopyranones.


Molecules | 2011

Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17.

Peiqin Li; Ziling Mao; Yan Li; Yan Mou; Shiqiong Lu; Youliang Peng; Ligang Zhou

The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L) was achieved, which was 5.65-fold of control (0.387 mg/L). When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively.


Molecules | 2014

Natural Dibenzo-α-Pyrones and Their Bioactivities

Ziling Mao; Weibo Sun; Linyun Fu; Haiyu Luo; Daowan Lai; Ligang Zhou

Natural dibenzo-α-pyrones are an important group of metabolites derived from fungi, mycobionts, plants and animal feces. They exhibit a variety of biological activities such as toxicity on human and animals, phytotoxicity as well as cytotoxic, antioxidant, antiallergic, antimicrobial, antinematodal, and acetylcholinesterase inhibitory properties. Dibenzo-α-pyrones are biosynthesized via the polyketide pathway in microorganisms or metabolized from plant-derived ellagitannins and ellagic acid by intestinal bacteria. At least 53 dibenzo-α-pyrones have been reported in the past few decades. This mini-review aims to briefly summarize the occurrence, biosynthesis, biotransformation, as well as their biological activities and functions. Some considerations related to synthesis, production and applications of dibenzo-α-pyrones are also discussed.


Journal of Natural Products | 2014

Bioactive Spirobisnaphthalenes from the Endophytic Fungus Berkleasmium sp.

Tijiang Shan; Jin Tian; Xiaohan Wang; Yan Mou; Ziling Mao; Daowan Lai; Jungui Dai; Youliang Peng; Ligang Zhou; Mingan Wang

Nine new spirobisnaphthalenes, palmarumycins B1-B9 (1-9), along with 13 known compounds (10-22), were isolated from cultures of the fungus Berkleasmium sp., an endophyte isolated from the medicinal plant Dioscorea zingiberensis C. H. Wright. The structures of the new compounds were elucidated by analysis of the 1D and 2D NMR and HRESIMS spectra and by comparison with known compounds. Compounds 7-9 contain an uncommon 2,3-dihydro-1H-inden-1-one unit. All isolated compounds were evaluated for their antibacterial activities against Bacillus subtilis, Staphylococcus hemolyticus, Agrobacterium tumefaciens, Pseudomonas lachrymans, Ralstonia solanacearum, and Xanthomonas vesicatoria and for their antifungal effects against the spore germination of Magnaporthe oryzae. Palmarumycin C8 (22) exhibited the best antibacterial and antifungal effects. In addition, diepoxin δ (11) and palmarumycin C8 (22) showed pronounced cytotoxic activities against five human cancer cell lines (HCT-8, Bel-7402, BGC-823, A 549, A 2780) with IC50 values of 1.28-5.83 μM.


International Journal of Molecular Sciences | 2013

Enhancement of Palmarumycins C12 and C13 Production in Liquid Culture of Endophytic Fungus Berkleasmium sp. Dzf12 after Treatments with Metal Ions

Yan Mou; Haiyu Luo; Ziling Mao; Tijiang Shan; Weibo Sun; Kaiyi Zhou; Ligang Zhou

The influences of eight metal ions (i.e., Na+, Ca2+, Ag+, Co2+, Cu2+, Al3+, Zn2+, and Mn4+) on mycelia growth and palmarumycins C12 and C13 production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 were investigated. Three metal ions, Ca2+, Cu2+ and Al3+ were exhibited as the most effective to enhance mycelia growth and palmarumycin production. When calcium ion (Ca2+) was applied to the medium at 10.0 mmol/L on day 3, copper ion (Cu2+) to the medium at 1.0 mmol/L on day 3, aluminum ion (Al3+) to the medium at 2.0 mmol/L on day 6, the maximal yields of palmarumycins C12 plus C13 were obtained as 137.57 mg/L, 146.28 mg/L and 156.77 mg/L, which were 3.94-fold, 4.19-fold and 4.49-fold in comparison with that (34.91 mg/L) of the control, respectively. Al3+ favored palmarumycin C12 production when its concentration was higher than 4 mmol/L. Ca2+ had an improving effect on mycelia growth of Berkleasmium sp. Dzf12. The combination effects of Ca2+, Cu2+ and Al3+ on palmarumycin C13 production were further studied by employing a statistical method based on the central composite design (CCD) and response surface methodology (RSM). By solving the quadratic regression equation between palmarumycin C13 and three metal ions, the optimal concentrations of Ca2+, Cu2+ and Al3+ in medium for palmarumycin C13 production were determined as 7.58, 1.36 and 2.05 mmol/L, respectively. Under the optimum conditions, the predicted maximum palmarumycin C13 yield reached 208.49 mg/L. By optimizing the combination of Ca2+, Cu2+ and Al3+ in medium, palmarumycin C13 yield was increased to 203.85 mg/L, which was 6.00-fold in comparison with that (33.98 mg/L) in the original basal medium. The results indicate that appropriate metal ions (i.e., Ca2+, Cu2+ and Al3+) could enhance palmarumycin production. Application of the metal ions should be an effective strategy for palmarumycin production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12.


Journal of Natural Products | 2016

Bioactive Dibenzo-α-pyrone Derivatives from the Endophytic Fungus Rhizopycnis vagum Nitaf22

Daowan Lai; Ali Wang; Yuheng Cao; Kaiyi Zhou; Ziling Mao; Xuejiao Dong; Jin Tian; Dan Xu; Jungui Dai; Yu Peng; Ligang Zhou; Yang Liu

Six new dibenzo-α-pyrones, rhizopycnolides A (1) and B (2) and rhizopycnins A-D (3-6), together with eight known congeners (7-14), were isolated from the endophytic fungus Rhizopycnis vagum Nitaf22 obtained from Nicotiana tabacum. The structures of the new compounds were unambiguously elucidated using NMR, HRESIMS, TDDFT ECD calculation, and X-ray crystallography data. Rhizopycnolides A (1) and B (2) feature an uncommon γ-butyrolactone-fused dibenzo-α-pyrone tetracyclic skeleton (6/6/6/5), while rhizopycnin B (4) was the first amino group containing dibenzo-α-pyrone. Rhizopycnolides A (1) and B (2) are proposed to be biosynthesized from polyketide and tricarboxylic acid cycle pathways. The isolated compounds were tested for their antibacterial, antifungal, and cytotoxic activities. Among them, rhizopycnolide A (1), rhizopycnins C (5) and D (6), TMC-264 (8), penicilliumolide D (11), and alternariol (12) were active against the tested pathogenic bacteria Agrobacterium tumefaciens, Bacillus subtilis, Pseudomonas lachrymans, Ralstonia solanacearum, Staphylococcus hemolyticus, and Xanthomonas vesicatoria with MIC values in the range 25-100 μg/mL. Rhizopycnin D (6) and TMC-264 (8) strongly inhibited the spore germination of Magnaporthe oryzae with IC50 values of 9.9 and 12.0 μg/mL, respectively. TMC-264 (8) showed potent cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, NCI-H1650, and A2780) with IC50 values of 3.2-7.8 μM.


Toxins | 2015

Main Ustilaginoidins and Their Distribution in Rice False Smut Balls

Jiajia Meng; Weibo Sun; Ziling Mao; Dan Xu; Xiaohan Wang; Shiqiong Lu; Daowan Lai; Yang Liu; Ligang Zhou; Guozhen Zhang

Rice false smut has become an increasingly serious fungal disease in rice (Oryza sativa L.) production worldwide. Ustilaginoidins are bis-naphtho-γ-pyrone mycotoxins previously isolated from the rice false smut balls (FSBs) infected by the pathogen Villosiclava virens in rice spikelets on panicles. To investigate the main ustilaginoidins and their distribution in rice FSBs, five main bis-naphtho-γ-pyrones, namely ustilaginoidins A (1), G (2), B (3), I (4) and C (5), were isolated and identified by NMR and high-resolution mass spectrometry as well as by comparison with the data in the literature. The rice FSBs at early, middle and late maturity stages were divided into their different parts and the contents of five main ustilaginoidins for each part were determined by HPLC analysis. The results revealed that the highest levels of ustilaginoidins were in late stage rice FSBs, followed by those at middle stage. Most ustilaginoidins, 96.4% of the total quantity, were distributed in the middle layer at early stage. However, ustilaginoidins were mainly distributed in the outer and middle layers at middle and late stages. Small amounts of ustilaginoidins A (1) and G (2) were found in the inner part of rice FSBs at each maturity stage. The contents of ustilaginoidins A (1) and G (2) without hydroxymethyl groups at C-2 and C-2’ of the γ-pyrone rings in rice FSBs were relatively high at early stage, while the contents of ustilaginoidins B (3), I (4), and C (5) with hydroxymethyl groups at C-2 or C-2’ were relatively high at late stage.


Brazilian Journal of Microbiology | 2016

Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities

Ruiting Yu; Xiaohan Wang; Ziling Mao; Linyun Fu; Yang Liu; Ligang Zhou

One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75 μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27 μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18 μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17 μg/mL and 74.62 μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms.


Molecules | 2014

Enhanced Production of Botrallin and TMC-264 with in Situ Macroporous Resin Adsorption in Mycelial Liquid Culture of the Endophytic Fungus Hyalodendriella sp. Ponipodef12

Haiyu Luo; Hongwei Liu; Yuheng Cao; Dan Xu; Ziling Mao; Yan Mou; Jiajia Meng; Daowan Lai; Yang Liu; Ligang Zhou

Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid “Neva” of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both intracellular and extracellular products. The aim of this study was to evaluate an in situ macroporous resin adsorption for enhancement of botrallin and TMC-264 production in mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Production of botrallin and TMC-264 was most effectively enhanced by macroporous resin DM-301 among the thirteen nonionic macroporous resins tested. The highest botrallin yield (51.47 mg/L, which was 2.29-fold higher than the control at 22.49 mg/L) was obtained by adding resin DM-301 at 4.38% (g/mL) to the culture broth on day 24 and allowing a period of 4 days for adsorption. The highest TMC-264 yield reached 47.74 mg/L, which was 11.76-fold higher than that of the control (4.06 mg/L), and was achieved by adding DM-301 resin at 4.38% (w/v) in the culture broth on day 24 and allowing a period of 6 days for adsorption. The results show that in situ resin adsorption is an effective strategy for enhancing production of botrallin and TMC-264, and also for facilitating their recovery from mycelial liquid culture of Hyalodendriella sp. Ponipodef12.


International Journal of Molecular Sciences | 2012

Medium Optimization for Exopolysaccharide Production in Liquid Culture of Endophytic Fungus Berkleasmium sp. Dzf12

Peiqin Li; Liang Xu; Yan Mou; Tijiang Shan; Ziling Mao; Shiqiong Lu; Youliang Peng; Ligang Zhou

Berkleasmium sp. Dzf12, an endophytic fungus from Dioscorea zingiberensis, is a high producer of spirobisnaphthalenes with various bioactivities. The exopolysaccharide (EPS) produced by this fungus also shows excellent antioxidant activity. In this study, the experimental designs based on statistics were employed to evaluate and optimize the medium for EPS production in liquid culture of Berkleasmium sp. Dzf12. For increasing EPS yield, the concentrations of glucose, peptone, KH2PO4, MgSO4·7H2O and FeSO4·7H2O in medium were optimized using response surface methodology (RSM). Both the fractional factorial design (FFD) and central composite design (CCD) were applied to optimize the main factors which significantly affected EPS production. The concentrations of glucose, peptone and MgSO4·7H2O were found to be the main effective factors for EPS production by FFD experimental analysis. Based on the further CCD optimization and RSM analysis, a quadratic polynomial regression equation was derived from the EPS yield and three variables. Statistical analysis showed the polynomial regression model was in good agreement with the experimental results with the determination coefficient (adj-R2) as 0.9434. By solving the quadratic regression equation, the optimal concentrations of glucose, peptone and MgSO4·7H2O for EPS production were determined as 63.80, 20.76 and 2.74 g/L, respectively. Under the optimum conditions, the predicted EPS yield reached the maximum (13.22 g/L). Verification experiment confirmed the validity with the actual EPS yield as 13.97 g/L, which was 6.29-fold in comparison with that (2.22 g/L) in the original basal medium. The results provide the support data for EPS production in large scale and also speed up the application of Berkleasmium sp. Dzf12.

Collaboration


Dive into the Ziling Mao's collaboration.

Top Co-Authors

Avatar

Ligang Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Daowan Lai

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dan Xu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tijiang Shan

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Weibo Sun

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Youliang Peng

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ali Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiyu Luo

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jin Tian

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaohan Wang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge