Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziva Yizhar is active.

Publication


Featured researches published by Ziva Yizhar.


Journal of Biomechanics | 2008

Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee

Sigal Portnoy; Ziva Yizhar; Noga Shabshin; Yacov Itzchak; A. Kristal; Y. Dotan-Marom; Itzhak Siev-Ner; Amit Gefen

Most trans-tibial amputation (TTA) patients use a prosthesis to retain upright mobility capabilities. Unfortunately, interaction between the residual limb and the prosthetic socket causes elevated internal strains and stresses in the muscle and fat tissues in the residual limb, which may lead to deep tissue injury (DTI) and other complications. Presently, there is paucity of information on the mechanical conditions in the TTA residual limb during load-bearing. Accordingly, our aim was to characterize the mechanical conditions in the muscle flap of the residual limb of a TTA patient after donning the prosthetic socket and during load-bearing. Knowledge of internal mechanical conditions in the muscle flap can be used to identify the risk for DTI and improve the fitting of the prosthesis. We used a patient-specific modelling approach which involved an MRI scan, interface pressure measurements between the residual limb and the socket of the prosthesis and three-dimensional non-linear large-deformation finite-element (FE) modelling to quantify internal soft tissue strains and stresses in a female TTA patient during static load-bearing. Movement of the truncated tibia and fibula during load-bearing was measured by means of MRI and used as displacement boundary conditions for the FE model. Subsequently, we calculated the internal strains, strain energy density (SED) and stresses in the muscle flap under the truncated bones. Internal strains under the tibia peaked at 85%, 129% and 106% for compression, tension and shear strains, respectively. Internal strains under the fibula peaked at substantially lower values, that is, 19%, 22% and 19% for compression, tension and shear strains, respectively. Strain energy density peaked at the tibial end (104kJ/m(3)). The von Mises stresses peaked at 215kPa around the distal end of the tibia. Stresses under the fibula were at least one order of magnitude lower than the stresses under the tibia. We surmise that our present patient-specific modelling method is an important tool in understanding the etiology of DTI in the residual limbs of TTA patients.


Annals of Biomedical Engineering | 2006

Real-Time Patient-Specific Finite Element Analysis of Internal Stresses in the Soft Tissues of a Residual Limb: A New Tool for Prosthetic Fitting

Sigal Portnoy; G. Yarnitzky; Ziva Yizhar; A. Kristal; U. Oppenheim; Itzhak Siev-Ner; Amit Gefen

Fitting of a prosthetic socket is a critical stage in the process of rehabilitation of a trans-tibial amputation (TTA) patient, since a misfit may cause pressure ulcers or a deep tissue injury (DTI: necrosis of the muscle flap under intact skin) in the residual limb. To date, prosthetic fitting typically depends on the subjective skills of the prosthetist, and is not supported by biomedical instrumentation that allows evaluation of the quality of fitting. Specifically, no technology is presently available to provide real-time continuous information on the internal distribution of mechanical stresses in the residual limb during fitting of the prosthesis, or while using it and this severely limits patient evaluations. In this study, a simplified yet clinically oriented patient-specific finite element (FE) model of the residual limb was developed for real-time stress analysis. For this purpose we employed a custom-made FE code that continuously calculates internal stresses in the residual limb, based on boundary conditions acquired in real-time from force sensors, located at the limb-prosthesis interface. Validation of the modeling system was accomplished by means of a synthetic phantom of the residual limb, which allowed simultaneous measurements of interface pressures and internal stresses. Human studies were conducted subsequently in five TTA patients. The dimensions of bones and soft tissues were obtained from X-rays of the residual limb of each patient. An indentation test was performed in order to obtain the effective elastic modulus of the soft tissues of the residual limb. Seven force sensors were placed between the residual limb and the prosthetic liner, and subjects walked on a treadmill during analysis. Generally, stresses under the shinbones were ∼threefold higher than stresses at the soft tissues behind the bones. Usage of a thigh corset decreased the stresses in the residual limb during gait by approximately 80%. Also, the stresses calculated during the trial of a subject who complained about pain and discomfort were the highest, confirming that his socket was not adequately fitted. We conclude that real-time patient-specific FE analysis of internal stresses in deep soft tissues of the residual limb in TTA patients is feasible. This method is promising for improving the fitting of prostheses in the clinical setting and for protecting the residual limb from pressure ulcers and DTI.


Journal of Biomechanics | 2009

Patient-specific analyses of deep tissue loads post transtibial amputation in residual limbs of multiple prosthetic users

Sigal Portnoy; Itzhak Siev-Ner; Noga Shabshin; A. Kristal; Ziva Yizhar; Amit Gefen

Active transtibial amputation (TTA) patients are at risk for developing pressure ulcers (PU) and deep tissue injury (DTI) while using their prosthesis. It is therefore important to obtain knowledge of the mechanical state in the internal soft tissues of the residuum, as well as knowledge of the mechanical state upon its surface. Our aim was to apply patient-specific MRI-based non-linear finite element (FE) models to quantify internal strains in TTA prosthetic users (n=5) during load-bearing. By further employing a strain injury threshold for skeletal muscle, we identified patients susceptible to DTI. The geometrical characteristics of the residuum of the TTA participants varied substantially between patients, e.g. the residuum lengths were 7.6, 8.1, 9.2, 11.5 and 13.3cm. We generally found that internal strains were higher in the bone proximity than in the muscle flap periphery. The highest strains, which in some patients exceeded 50% (engineering strain) for compressive, tensile and shear strains, were found in the shortest residual limbs, i.e. the 7.6 and 8.1cm-long limbs. Correspondingly, the lowest strains were found in the 13.3cm-long residuum, which had the bulkiest muscle flap. Yet, even in the case of a long residuum, about a third of the soft tissue volume at the distal tibial proximity area was occupied by large (>5%) internal compressive, tensile and shear strains. For both patients with shorter residual limbs, the internal principal compressive strains above 5% occupied almost the entire distal tibial proximity area. For a patient whose distal tibial end was flat (non-beveled), internal strains were more uniformly distributed, compared to the strain distributions in the other models, where focal elevated strains accumulated in the bone proximity. We found no muscle strains above the immediate injury threshold, indicating that all patients were not at immediate risk for DTI. Two patients whose residuum fat padding was minimal to none, were the only ones identified as theoretically prone to DTI at long (>3h) continuous weight-bearing periods. We conclude that there is a wide variability in internal mechanical conditions between residual limbs across subjects, which necessitates patient-specific quantitative analyses of internal mechanical states in TTA patients, to assess the mechanical performance of the reconstructed limb and in particular, the individual risk for deep PU or DTI.


The Foot | 2012

In-shoe center of pressure: Indirect force plate vs. direct insole measurement

Eytan M. Debbi; Alon Wolf; Yulia Goryachev; Ziva Yizhar; Elhanan Luger; Ronen Debi; Amir Haim

BACKGROUND In-shoe center of pressure (COP) measurement is essential in biomechanics. COP can be measured directly utilizing pressure-sensitive insoles, or calculated indirectly via force plate-generated data. While the latter does not require the use of additional measurement hardware (shoe insoles), its precision at calculating in-shoe COP has not been determined. Our purpose was to ascertain the precision of force plate in-shoe COP calculations and enhance their accuracy through a mathematical algorithm. METHODS Twelve male students participated in the study. In-shoe COP was measured synchronously via the Pedar-X insole system and AMTI force plates, comparing the measurements of both systems. A mathematical algorithm was created to improve agreement between the systems and comparisons were recalculated. RESULTS The two methods showed different measurements of in-shoe COP. The medio-lateral (ML) and anterior-posterior (AP) Pearson correlation coefficients between systems were 0.44 ± 0.35 and 0.99 ± 0.01, and the ML and AP RMS errors were 6.3 ± 3.0 mm and 43.0 ± 12.5 mm, respectively. Using a mathematical algorithm, the differences between the measurements of each system could be reduced significantly (all P<0.001). CONCLUSIONS Without adjustment, force plates give an approximate location of the COP. Using an adjustment model greatly improves the accuracy of the COP trajectory during stance.


Gait & Posture | 2009

Utilization of the foot load monitor for evaluating deep plantar tissue stresses in patients with diabetes: Proof-of-concept studies

Eran Atlas; Ziva Yizhar; Sam Khamis; Noa Slomka; Shlomo Hayek; Amit Gefen

The purposes of the present study were to (1) determine the internal plantar mechanical stresses in diabetic and healthy subjects during everyday activities, and (2) identify stress parameters potentially capable of distinguishing between diabetic and healthy subjects. A self-designed, portable, real-time and subject-specific foot load monitor which employs the Hertz contact theory was utilized to determine the internal dynamic plantar tissue stresses in 10 diabetic patients and 6 healthy subjects during free walking and outdoors stair climbing. Internal stress parameters and average stress-doses were evaluated, and the results obtained from the two groups were compared. Internal plantar stresses and averaged stress-doses during free walking and outdoors stairs climbing in the diabetic group were 2.5-5.5-fold higher than in the healthy group (p<0.001; stair climbing comparisons incorporated data from five diabetic patients). The interfacial pressures measured during free walking were slightly higher ( approximately 1.5-fold) in the diabetic group (p<0.05), but there was no significant difference between the two groups during stairs climbing. We conclude that during walking and stair climbing, internal plantar tissue stresses are considerably higher than foot-shoe interface pressures, and in diabetic patients, internal stresses substantially exceed the levels in healthy. The proposed method can be used for rating performances or design of footwear for protecting sub-dermal plantar tissues in patients who are at risk for developing foot ulcers. It may also be helpful in providing biofeedback to neuropathic diabetic patients.


Perceptual and Motor Skills | 1995

Variations in Several Mechanical Parameters Associated with Elbow Flexion during Practice under Different Load Criteria

Ziva Yizhar; Zeevi Dvir

The purpose of this study was to analyze variations in the accuracy of the moment produced by the elbow flexors during feedback-assisted acquisition of a motor skill. The task consisted of minimizing the error around three criterional levels: 20%, 30%, or 50% of the maximal isokinetic concentric moment of diese muscles measured at 90°/sec. Healthy women, aged 22 to 30 years, were divided into three groups (nA = 6, nB = 6, nc = 4) corresponding to the above criteria. They were asked to perform 10 sets of 10 right-elbow flexions per day over a period of three consecutive days. The results indicated a significant difference among the groups mainly in terms of overshooting (Group A) or undershooting (Group C) the criterion. On the other hand, Group B subjects performed optimally as indicated both by a significant convergence to the criterion (30%) and a comparatively small number of repetitions required for achievement. These findings demonstrate the existence of an optimal performance point which is located at about 30% of the maximal isokinetic concentric moment.


Journal of Human Kinetics | 2015

The Relationship Between Foot and Pelvic Alignment While Standing

Sam Khamis; Gali Dar; Chava Peretz; Ziva Yizhar

Abstract A normal motion and segmental interrelationship has been determined as a significant factor in normal function. Yet, the relationship between distal segments and pelvic alignment needs further investigation. The aim of this study was to investigate the interrelationship between distal and proximal lower extremity segments while standing and during induced feet hyperpronation. Changes in alignment of the pelvis and lower extremities were measured at a gait laboratory using the VICON 612 computerized motion analysis system. Thirty-five healthy volunteer subjects were recruited. Four randomized repeated-measure standing modes were used: standing directly on the floor and then on three wedges angled at 10°, 15° and 20° to induce bilateral hyperpronation for 20 seconds. A significant (p<0.05) bi-variate relationship was found between the anterior pelvic tilt and thigh internal rotation, in all four standing positions (.41≤r≤.46, in all p<0.014). A combined effect of rotational alignment between segments and the cumulative effect of foot hyperpronation on pelvic tilt revealed that only the shank significantly affected pelvic alignment, acting as a mediator between a foot and a thigh with the thigh having a crude significant effect on the pelvis. When internal rotation of the shank occurs, calcaneal eversion couples with thigh internal rotation and anterior pelvic tilt. It can be concluded that in response to induced hyperpronation, the shank is a pivotal segment in postural adjustment.


Journal of Medical Devices-transactions of The Asme | 2008

The Diabetic Foot Load Monitor: A Portable Device for Real-Time Subject-Specific Measurements of Deep Plantar Tissue Stresses During Gait

Eran Atlas; Ziva Yizhar; Amit Gefen

Elevated stresses in deep plantar tissue of diabetic neuropathic patients were associated with an increased risk for foot ulceration, but only interfacial foot pressures are currently measured to evaluate susceptibility to ulcers. The goals of this study were to develop a real-time patient-specific plantar tissue stress monitor based on the Hertz contact theory. The biomechanical model for stress calculations considers the heel and metatarsal head pads, where most ulcers occur. For calculating stress concentrations around the bonepad interface, plantar tissue is idealized as elastic and incompressible semi-infinite bulk (with properties measured by indentation), which is penetrated by a rigid sphere with the bone’s radius of curvature (from X-ray). Hertz’s theory is used to solve the bone-pad mechanical interactions, after introducing correction coefficients to consider large deformations. Foot-shoe forces are measured to solve and display the principal compressive, tensile, and von Mises plantar tissue stresses in real time. Our system can be miniaturized in a handheld computer, allowing plantar stress monitoring in the patient’s natural environment. Small groups of healthy subjects N =6 and diabetic patients N =3 participated in an evaluation study in which the differences between free walking and treadmill walking were examined. We also compared gait on a flat surface to gait on an ascending/ descending slope of 3.5 deg and when ascending/descending stairs. Peak internal compression stress was about threefold greater than the interface pressure at the calcaneus region. Subjects who were inexperience in treadmill walking displayed high gait-cycle variability in the internal stresses as well as poor foot loading. There was no statistical difference between gait on a flat surface and gait when ascending/descending a slope. Internal stresses under the calcaneus during gait on a flat surface, however, were significantly higher than when ascending/descending stairs. We conclude that the present stress monitor is a promising tool for real-time patient-specific evaluation of deep tissue stresses, providing valuable information in the effort to protect diabetic patients from foot ulceration. Clinical studies are now underway to identify which stress parameters can distinguish between diabetic and normal subjects; these parameters may be used for establishing injury threshold criteria. DOI: 10.1115/1.2891241


Archive | 2009

Patient-Specific Finite Element Models of Transtibial Amputation in Several Prosthetic Users: The Inter-Subject Variability

Sigal Portnoy; Itzhak Siev-Ner; Noga Shabshin; A. Kristal; Ziva Yizhar; Amit Gefen

Active transtibial amputation (TTA) patients are at risk for developing pressure ulcers and deep tissue injury (DTI) while using their prosthesis. It is therefore important to obtain knowledge of the mechanical state in the internal soft tissues of the residuum, as well as the mechanical state upon its surface. For this purpose we employed patient-specific MRI-based non-linear 3D finite element models to quantify the internal mechanical conditions in 3 residual limbs of TTA prosthetic users during load-bearing. The geometrical characteristics of the residuum of the TTA participants varied significantly between patients, e.g. the residuum lengths were 7.6, 9.2 and 13.3cm. We generally found that internal strains were higher in the bone proximity than in the muscle periphery. The highest strains were found in the 7.6cm-long residuum. Correspondingly, the lowest strains were found in the 13.3cm-long residuum, which had the thickest muscle flap. Yet even in the case of a long residuum, a third of the distal tibial proximity area was occupied by internal principal compression strains above 5%. For both patients with shorter residual limbs, the internal principal compression strains above 5% occupied almost the entire distal tibial proximity area. We conclude that the wide viability between residual limbs necessitate quantitative analysis of internal mechanical state in the TTA individual to assess the risk for DTI onset.


Journal of Biomechanics | 2012

ENHANCING THE ACCURACY OF IN-SHOE CENTER OF PRESSURE MEASUREMENTS OBTAINED BY FORCE PLATES

Eytan M. Debbi; Yulia Goryachev; Amir Haim; Ziva Yizhar; Alon Wolf

AMTI force plates precisely measure the location of the ground reaction force (GRF) between the floor and shoe soles. It is difficult to use the GRF to accurately predict the centre of pressure (COP) of the foot between the foot and the shoe soles [Chesin 2000]. The purpose of the present study was to predict the in-shoe COP using GRF coordinates and create a model to improve the accuracy of the COP.

Collaboration


Dive into the Ziva Yizhar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alon Wolf

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amir Haim

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge