Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zixing Liu is active.

Publication


Featured researches published by Zixing Liu.


Journal of Biological Chemistry | 2010

MicroRNA-125b Confers the Resistance of Breast Cancer Cells to Paclitaxel through Suppression of Pro-apoptotic Bcl-2 Antagonist Killer 1 (Bak1) Expression

Ming Zhou; Zixing Liu; Yuhua Zhao; Yan Ding; Hao Liu; Yaguang Xi; Wei Xiong; Guiyuan Li; Jianrong Lu; Øystein Fodstad; Adam I. Riker; Ming Tan

Paclitaxel (Taxol) is an effective chemotherapeutic agent for treatment of cancer patients. Despite impressive initial clinical responses, the majority of patients eventually develop some degree of resistance to Taxol-based therapy. The mechanisms underlying cancer cells resistance to Taxol are not fully understood. MicroRNA (miRNA) has emerged to play important roles in tumorigenesis and drug resistance. However, the interaction between the development of Taxol resistance and miRNA has not been previously explored. In this study we utilized a miRNA array to compare the differentially expressed miRNAs in Taxol-resistant and their Taxol-sensitive parental cells. We verified that miR-125b, miR-221, miR-222, and miR-923 were up-regulated in Taxol-resistant cancer cells by real-time PCR. We further investigated the role and mechanisms of miR-125b in Taxol resistance. We found that miR-125b was up-regulated in Taxol-resistant cells, causing a marked inhibition of Taxol-induced cytotoxicity and apoptosis and a subsequent increase in the resistance to Taxol in cancer cells. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) is a direct target of miR-125b. Down-regulation of Bak1 suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol. Restoring Bak1 expression by either miR-125b inhibitor or re-expression of Bak1 in miR-125b-overexpressing cells recovered Taxol sensitivity, overcoming miR-125-mediated Taxol resistance. Taken together, our data strongly support a central role for miR-125b in conferring Taxol resistance through the suppression of Bak1 expression. This finding has important implications in the development of targeted therapeutics for overcoming Taxol resistance in a number of different tumor histologies.


Molecular Cancer | 2010

Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol

Ming-Ming Zhou; Yuhua Zhao; Yan Ding; Hao Liu; Zixing Liu; Øystein Fodstad; Adam I. Riker; Sushama Kamarajugadda; Jianrong Lu; Laurie B. Owen; Susan P. LeDoux; Ming-Ming Tan

BackgroundTaxol is one of the most effective chemotherapeutic agents for the treatment of patients with breast cancer. Despite impressive clinical responses initially, the majority of patients eventually develop resistance to Taxol. Lactate dehydrogenase-A (LDH-A) is one of the predominant isoforms of LDH expressed in breast tissue, which controls the conversion of pyruvate to lactate and plays an important role in glucose metabolism. In this study we investigated the role of LDH-A in mediating Taxol resistance in human breast cancer cells.ResultsTaxol-resistant subclones, derived from the cancer cell line MDA-MB-435, sustained continuous growth in high concentrations of Taxol while the Taxol-sensitive cells could not. The increased expression and activity of LDH-A were detected in Taxol-resistant cells when compared with their parental cells. The downregulation of LDH-A by siRNA significantly increased the sensitivity of Taxol-resistant cells to Taxol. A higher sensitivity to the specific LDH inhibitor, oxamate, was found in the Taxol-resistant cells. Furthermore, treating cells with the combination of Taxol and oxamate showed a synergistical inhibitory effect on Taxol-resistant breast cancer cells by promoting apoptosis in these cells.ConclusionLDH-A plays an important role in Taxol resistance and inhibition of LDH-A re-sensitizes Taxol-resistant cells to Taxol. This supports that Warburg effect is a property of Taxol resistant cancer cells and may play an important role in the development of Taxol resistance. To our knowledge, this is the first report showing that the increased expression of LDH-A plays an important role in Taxol resistance of human breast cancer cells. This study provides valuable information for the future development and use of targeted therapies, such as oxamate, for the treatment of patients with Taxol-resistant breast cancer.


Cancer Research | 2011

Overcoming Trastuzumab Resistance in Breast Cancer by Targeting Dysregulated Glucose Metabolism

Yuhua Zhao; Hao Liu; Zixing Liu; Yan Ding; Susan P. LeDoux; Glenn L. Wilson; Richard Voellmy; Yifeng Lin; Wensheng Lin; Rita Nahta; Bolin Liu; Øystein Fodstad; Jieqing Chen; Yun Wu; Janet E. Price; Ming Tan

Trastuzumab shows remarkable efficacy in treatment of ErbB2-positive breast cancers when used alone or in combination with other chemotherapeutics. However, acquired resistance develops in most treated patients, necessitating alternate treatment strategies. Increased aerobic glycolysis is a hallmark of cancer and inhibition of glycolysis may offer a promising strategy to preferentially kill cancer cells. In this study, we investigated the antitumor effects of trastuzumab in combination with glycolysis inhibitors in ErbB2-positive breast cancer. We found that trastuzumab inhibits glycolysis via downregulation of heat shock factor 1 (HSF1) and lactate dehydrogenase A (LDH-A) in ErbB2-positive cancer cells, resulting in tumor growth inhibition. Moreover, increased glycolysis via HSF1 and LDH-A contributes to trastuzumab resistance. Importantly, we found that combining trastuzumab with glycolysis inhibition synergistically inhibited trastuzumab-sensitive and -resistant breast cancers in vitro and in vivo, due to more efficient inhibition of glycolysis. Taken together, our findings show how glycolysis inhibition can dramatically enhance the therapeutic efficacy of trastuzumab in ErbB2-positive breast cancers, potentially useful as a strategy to overcome trastuzumab resistance.


Nature Communications | 2012

Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism

Yan Ding; Zixing Liu; Shruti Desai; Yuhua Zhao; Hao Liu; Lewis K. Pannell; Elizabeth R. Wright; Laurie B. Owen; Windy Dean-Colomb; Øystein Fodstad; Jianrong Lu; Susan P. LeDoux; Glenn L. Wilson; Ming Tan

It is well known that ErbB2, a receptor tyrosine kinase, localizes on the plasma membrane. Here we describe a novel observation that ErbB2 also localizes in mitochondria of cancer cells and patient samples. We found that ErbB2 translocates into mitochondria through the association with mtHSP70. Additionally, mitochondrial ErbB2 (mtErbB2) negatively regulates mitochondrial respiratory functions. Oxygen consumption and activities of complexes of the mitochondrial electron transport chain were decreased in mtErbB2-overexpressing cells. Mitochondrial membrane potential and the cellular ATP level also were decreased. In contrast, mtErbB2 enhanced cellular glycolysis. The translocation of ErbB2 and its impact on mitochondrial function are kinase dependent. Interestingly, cancer cells with higher levels of mtErbB2 were more resistant to ErbB2 targeting antibody trastuzumab. Our study provides a novel perspective on the metabolic regulatory function of ErbB2 and reveals that mtErbB2 plays an important role in the regulation of cellular metabolism and cancer cell resistance to therapeutics.


Journal of Biological Chemistry | 2013

Heat Shock Factor 1 (HSF1) Controls Chemoresistance and Autophagy through Transcriptional Regulation of Autophagy-related Protein 7 (ATG7)

Shruti Desai; Zixing Liu; Jun Yao; Nishant Patel; Jieqing Chen; Yun Wu; Erin Eun Young Ahn; Øystein Fodstad; Ming Tan

Background: HSF1 influences chemoresistance in cancer. Results: Chemotherapy activates HSF1, leading to direct transcriptional regulation of autophagy related gene, ATG7. In vitro findings are supported by patient sample study. Conclusion: HSF1 regulates cytoprotective, heat shock-independent autophagy by directly regulating ATG7, which plays an important role in chemoresistance. Significance: Identification of novel HSF1/ATG7 axis in chemoresistance strongly supports development of robust combination therapies, targeting it in cancer. Heat shock factor 1 (HSF1), a master regulator of heat shock responses, plays an important role in tumorigenesis. In this study we demonstrated that HSF1 is required for chemotherapeutic agent-induced cytoprotective autophagy through transcriptional up-regulation of autophagy-related gene ATG7. Interestingly, this is independent of the HSF1 heat shock response function. Treatment of cancer cells with the FDA-approved chemotherapeutic agent carboplatin induced autophagy and growth inhibition, which were significantly increased upon knockdown of HSF1. Mechanistic studies revealed that HSF1 regulates autophagy by directly binding to ATG7 promoter and transcriptionally up-regulating its expression. Significantly, breast cancer patient sample study revealed that a higher ATG7 expression level is associated with poor patient survival. This novel finding was further confirmed by analysis of two independent patient databases, demonstrating a prognostic value of ATG7. Furthermore, a strong positive correlation was observed between levels of HSF1 and ATG7 in triple-negative breast cancer patient samples, thus validating our in vitro findings. This is the first study identifying a critical role for HSF1 in controlling cytoprotective autophagy through regulation of ATG7, which is distinct from the HSF1 function in the heat shock response. This is also the first study demonstrating a prognostic value of ATG7 in breast cancer patients. These findings strongly argue that combining chemotherapeutic agents with autophagy inhibition by repressing HSF1/ATG7 axis represents a promising strategy for future cancer treatment.


Molecular Cancer Therapeutics | 2011

B7-H3 Silencing Increases Paclitaxel Sensitivity by Abrogating Jak2/Stat3 Phosphorylation

Hao Liu; Christina Tekle; Yih Wen Chen; Alexandr Kristian; Yuhua Zhao; Ming Zhou; Zixing Liu; Yan Ding; Bin Wang; Gunhild M. Mælandsmo; Jahn M. Nesland; Øystein Fodstad; Ming Tan

In many types of cancer, the expression of the immunoregulatory protein B7-H3 has been associated with poor prognosis. Previously, we observed a link between B7-H3 and tumor cell migration and invasion, and in present study, we have investigated the role of B7-H3 in chemoresistance in breast cancer. We observed that silencing of B7-H3, via stable short hairpin RNA or transient short interfering RNA transfection, increased the sensitivity of multiple human breast cancer cell lines to paclitaxel as a result of enhanced drug-induced apoptosis. Overexpression of B7-H3 made the cancer cells more resistant to the drug. Next, we investigated the mechanisms behind B7-H3–mediated paclitaxel resistance and found that the level of Stat3 Tyr705 phosphorylation was decreased in B7-H3 knockdown cells along with the expression of its direct downstream targets Mcl-1 and survivin. The phosphorylation of Janus kinase 2 (Jak2), an upstream molecule of Stat3, was also significantly decreased. In contrast, reexpression of B7-H3 in B7-H3 knockdown and low B7-H3 expressing cells increased the phosphorylation of Jak2 and Stat3. In vivo animal experiments showed that B7-H3 knockdown tumors displayed a slower growth rate than the control xenografts. Importantly, paclitaxel treatment showed a strong antitumor activity in the mice with B7-H3 knockdown tumors, but only a marginal effect in the control group. Taken together, our data show that in breast cancer cells, B7-H3 induces paclitaxel resistance, at least partially by interfering with Jak2/Stat3 pathway. These results provide novel insight into the function of B7-H3 and encourage the design and testing of approaches targeting this protein and its partners. Mol Cancer Ther; 10(6); 960–71. ©2011 AACR.


Journal of Biological Chemistry | 2013

miR-125b Functions as a Key Mediator for Snail-induced Stem Cell Propagation and Chemoresistance

Zixing Liu; Hao Liu; Shruti Desai; David C. Schmitt; Ming Zhou; Hung T. Khong; Kristine S. Klos; Steven McClellan; Øystein Fodstad; Ming Tan

Background: Snail plays an important role in chemoresistance, but the mechanism is still unclear. Results: Up-regulation of microRNA-125b through Wnt signaling by snail enriches cancer stem cells and increases chemoresistance. Conclusion: MicroRNA-125b is a key mediator for Snail-induced stem cell propagation and chemoresistance. Significance: We reveal a novel mechanism for Snail-induced stem cell maintenance and chemoresistance. Chemoresistance is a major obstacle in cancer treatment. Our previous studies have shown that miR-125b plays an important role in chemoresistance. Here we report a novel mechanism that up-regulation of miR-125b through Wnt signaling by Snail enriches cancer stem cells. Overexpression of Snail dramatically increases the expression of miR-125b through the Snail-activated Wnt/β-catenin/TCF4 axis. Snail confers chemoresistance by repressing Bak1 through up-regulation of miR-125b. Restoring the expression of Bak1 or depleting miR-125b re-sensitizes Snail-expressing cancer cells to Taxol, indicating that miR-125b is critical in Snail-induced chemoresistance. Moreover, overexpression of miR-125b significantly increases the cancer stem cell population (CD24-CD44+), while depletion of miR-125b or rescue of the expression of Bak1 increases the non-stem cell population (CD24+CD44+) in Snail-overexpressing cells. These findings strongly support that miR-125b functions as a key mediator in Snail-induced cancer stem cell enrichment and chemoresistance. This novel mechanism for Snail-induced stem cell propagation and chemoresistance may have important implications in the development of strategies for overcoming cancer cell resistance to chemotherapy.


Cancer Research | 2016

Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1a

Sangbin Lim; Hao Liu; Luciana Madeira da Silva; Ritu Arora; Zixing Liu; Joshua B. Phillips; David C. Schmitt; Tung Vu; Steven McClellan; Yifeng Lin; Wensheng Lin; Gary A. Piazza; Øystein Fodstad; Ming Tan

B7-H3 is a member of B7 family of immunoregulatory transmembrane glycoproteins expressed by T cells. While B7-H3 overexpression is associated with poor outcomes in multiple cancers, it also has immune-independent roles outside T cells and its precise mechanistic contributions to cancer are unclear. In this study, we investigated the role of B7-H3 in metabolic reprogramming of cancer cells in vitro and in vivo We found that B7-H3 promoted the Warburg effect, evidenced by increased glucose uptake and lactate production in B7-H3-expressing cells. B7-H3 also increased the protein levels of HIF1α and its downstream targets, LDHA and PDK1, key enzymes in the glycolytic pathway. Furthermore, B7-H3 promoted reactive oxygen species-dependent stabilization of HIF1α by suppressing the activity of the stress-activated transcription factor Nrf2 and its target genes, including the antioxidants SOD1, SOD2, and PRX3. Metabolic imaging of human breast cancer xenografts in mice confirmed that B7-H3 enhanced tumor glucose uptake and tumor growth. Together, our results illuminate the critical immune-independent contributions of B7-H3 to cancer metabolism, presenting a radically new perspective on B7 family immunoregulatory proteins in malignant progression. Cancer Res; 76(8); 2231-42. ©2016 AACR.


Cell Death and Disease | 2015

ErbB2-intronic microRNA-4728: a novel tumor suppressor and antagonist of oncogenic MAPK signaling.

David C. Schmitt; L Madeira da Silva; W Zhang; Zixing Liu; Ravi Arora; Sangbin Lim; A M Schuler; Steven McClellan; Joel Andrews; A G Kahn; Miaomiao Zhou; E-Ye Ahn; Ming Tan

Although the role of the ErbB2/HER2 oncogene in cancers has been extensively studied, how ErbB2 is regulated remains poorly understood. A novel microRNA, mir-4728, was recently found within an intron of the ErbB2 gene. However, the function and clinical relevance of this intronic miRNA are completely unknown. Here, we demonstrate that mir-4728 is a negative regulator of MAPK signaling through directly targeting the ERK upstream kinase MST4 and exerts numerous tumor-suppressive properties in vitro and in animal models. Importantly, our patient sample study shows that mir-4728 was under-expressed in breast tumors compared with normal tissue, and loss of mir-4728 correlated with worse overall patient survival. These results strongly suggest that mir-4728 is a tumor-suppressive miRNA that controls MAPK signaling through targeting MST4, revealing mir-4728’s significance as a potential prognostic factor and target for therapeutic intervention in cancer. Moreover, this study represents a conceptual advance by providing strong evidence that a tumor-suppressive miRNA can antagonize the canonical signaling of its host oncogene.


Oncotarget | 2016

miR-125b regulates differentiation and metabolic reprogramming of T cell acute lymphoblastic leukemia by directly targeting A20

Zixing Liu; Kelly R. Smith; Hung T. Khong; Jingshan Huang; Eun Young Erin Ahn; Ming Zhou; Ming Tan

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy. Although it has been reported that overexpression of miR-125b leads to T-ALL development, the underlying mechanisms of miR-125b action are still unclear. The goal of this study is to delineate the role of miR-125b in T-ALL development. We found that miR-125b is highly expressed in undifferentiated leukemic T cells (CD4-negative) while its expression is low in differentiated T cells (CD4-positive). Overexpression of miR-125b increased the CD4-negative population in T cells, whereas depletion of miR-125b by miR-125b-sponge decreased the CD4-negative cell population. We identified that A20 (TNFAIP3) is a direct target of miR-125b in T cells. Overexpression of miR-125b also increased glucose uptake and oxygen consumption in T cells through targeting A20. Furthermore, restoration of A20 in miR-125b-overexpressing cells decreased the CD4-negative population in T cell leukemia, and decreased glucose uptake and oxygen consumption to the basal level of T cells transfected with vector. In conclusion, our data demonstrate that miR-125b regulates differentiation and reprogramming of T cell glucose metabolism via targeting A20. Since both de-differentiation and dysregulated glucose metabolism contribute to the development of T-cell leukemia, these findings provide novel insights into the understanding and treatment of T-ALL.

Collaboration


Dive into the Zixing Liu's collaboration.

Top Co-Authors

Avatar

Ming Tan

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Liu

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Shruti Desai

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Yan Ding

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Yuhua Zhao

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Ming Zhou

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven McClellan

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

David C. Schmitt

University of South Alabama

View shared research outputs
Researchain Logo
Decentralizing Knowledge