Ziyang Hao
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ziyang Hao.
Angewandte Chemie | 2012
Maiyun Yang; Yanqun Song; Meng Zhang; Shixian Lin; Ziyang Hao; Yuan Liang; Dianmu Zhang; Peng Chen
Live-cell pH measurements: An environment-sensitive fluorophore (green) was site-specifically introduced on HdeA, an acid-resistant chaperone showing pH-mediated conformational changes under low pH conditions. A survey of the attachment sites led to the discovery of one position on HdeA at which the attached fluorophore showed a strong fluorescence increase upon acidification.
Journal of the American Chemical Society | 2013
Jie Li; Shixian Lin; Jie Wang; Shang Jia; Maiyun Yang; Ziyang Hao; Xiaoyu Zhang; Peng Chen
Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.
Nature Chemical Biology | 2014
Ziyang Hao; Hubing Lou; Rongfeng Zhu; Jiuhe Zhu; Dianmu Zhang; Boxuan Simen Zhao; Shizhe Zeng; Xing Chen; Jefferson Y. Chan; Chuan He; Peng Chen
The widely conserved multiple antibiotic resistance regulator (MarR) family of transcription factors modulates bacterial detoxification in response to diverse antibiotics, toxic chemicals or both. The natural inducer for Escherichia coli MarR, the prototypical transcription repressor within this family, remains unknown. Here we show that copper signaling potentiates MarR derepression in E. coli. Copper(II) oxidizes a cysteine residue (Cys80) on MarR to generate disulfide bonds between two MarR dimers, thereby inducing tetramer formation and the dissociation of MarR from its cognate promoter DNA. We further discovered that salicylate, a putative MarR inducer, and the clinically important bactericidal antibiotics norfloxacin and ampicillin all stimulate intracellular copper elevation, most likely through oxidative impairment of copper-dependent envelope proteins, including NADH dehydrogenase-2. This membrane-associated copper oxidation and liberation process derepresses MarR, causing increased bacterial antibiotic resistance. Our study reveals that this bacterial transcription regulator senses copper(II) as a natural signal to cope with stress caused by antibiotics or the environment.
Journal of the American Chemical Society | 2011
Shixian Lin; Zhenrun Zhang; Hao Xu; Lin Li; She Chen; Jie Li; Ziyang Hao; Peng Chen
Enteric bacterial pathogens are known to effectively pass through the extremely acidic mammalian stomachs and cause infections in the small and/or large intestine of human hosts. However, their acid-survival strategy and pathogenesis mechanisms remain elusive, largely due to the lack of tools to directly monitor and manipulate essential components (e.g., defense proteins or invasive toxins) participating in these processes. Herein, we have extended the pyrrolysine-based genetic code expansion strategy for encoding unnatural amino acids in enteric bacterial species, including enteropathogenic Escherichia coli , Shigella , and Salmonella . Using this system, a photo-cross-linking amino acid was incorporated into a Shigella acid chaperone HdeA (shHdeA), which allowed the identification of a comprehensive list of in vivo client proteins that are protected by shHdeA upon acid stress. To further demonstrate the application of our strategy, an azide-bearing amino acid was introduced into a Shigella type 3 secretion effector, OspF, without interruption of its secretion efficiency. This site-specifically installed azide handle allowed the facile detection of OspFs secretion in bacterial extracellular space. Taken together, these bioorthogonal functionalities we incorporated into enteric pathogens were shown to facilitate the investigation of unique and important proteins involved in the pathogenesis and stress-defense mechanisms of pathogenic bacteria that remain exceedingly difficult to study using conventional methodologies.
Journal of the American Chemical Society | 2010
Boxuan Simen Zhao; Yujie Liang; Yanqun Song; Chunhong Zheng; Ziyang Hao; Peng Chen
The transcriptional regulatory protein OhrR is converted into a fluorescent bioprobe capable of detecting organic hydroperoxides in living cells with high sensitivity and selectivity.
Chemical Science | 2012
Wei Wei; Tianze Zhu; Yue Wang; Hualin Yang; Ziyang Hao; Peng Chen; Jing Zhao
A gold-specific sensory protein GolS from Samonella gol regulon was incorporated into E. coli, which in conjunction with an engineered downstream red fluorescence protein allowed the highly sensitive and selective whole-cell detection of gold(III) ions by naked eyes. The putative gold-chaperone, GolB, in the gol regulon was next verified to be specific to gold(I) ions over other metal ions including copper(I). The subsequent display of GolB on E. coli cell surface permitted selective enrichment of gold ions from media containing various thiophilic metal ions. The cell surface-enriched gold(I) was further shown to be easily recovered and the gold-deprived bacteria were capable for re-usage. E. coli bacteria harboring these gold-specific elements from the gol regulon could be a valuable tool for visual detection and facile recycling of gold ions from environmental resources.
Journal of Biological Inorganic Chemistry | 2017
Rongfeng Zhu; Ziyang Hao; Hubing Lou; Yanqun Song; Jingyi Zhao; Yuqing Chen; Jiuhe Zhu; Peng Chen
Multiple antibiotic resistance regulator (MarR) family proteins are widely conserved transcription factors that control bacterial resistance to antibiotics, environmental stresses, as well as the regulation of virulence determinants. Escherichia coli MarR, the prototype member of this family, has recently been shown to undergo copper(II)-catalyzed inter-dimer disulfide bond formation via a unique cysteine residue (Cys80) residing in its DNA-binding domain. However, despite extensive structural characterization of the MarR family proteins, the structural mechanism for DNA binding of this copper(II)-sensing MarR factor remains elusive. Here, we report the crystal structures of DNA-bound forms of MarR, which revealed a unique, concerted generation of two new helix–loop–helix motifs that facilitated MarR’s DNA binding. Structural analysis and electrophoretic mobility shift assays (EMSA) show that the flexibility of Gly116 in the center of helix α5 and the extensive hydrogen-bonding interactions at the N-terminus of helix α1 together assist the reorientation of the wHTH domains and stabilize MarR’s DNA-bound conformation.
Nature Protocols | 2017
Yi Yang; Haiping Song; Dan He; Shuai Zhang; Shizhong Dai; Xiao Xie; Shixian Lin; Ziyang Hao; Huangtao Zheng; Peng Chen
Although protein–protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey–bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey–bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.
Science China-chemistry | 2012
Xing Chen; Ziyang Hao; Peng Chen
The multiple antibiotic resistance regulatory protein (MarR) binds to two promoter sites on the marO operator in Escherichia coli. Our study showed that more than one MarR dimer proteins bound to either of its two promoter sites (Site I and Site II), suggesting that MarR might form higher complexes than homodimers when bound to DNA inside E. coli cells. To further verify this hypothesis, we site-specifically incorporated a photocrosslinking probe at the interface between two MarR dimer proteins. Photolysis in living E. coli cells revealed a covalent linkage between the two interdimer subunits of MarR, suggesting that MarR forms dimer of dimers in vivo.
Accounts of Chemical Research | 2011
Ziyang Hao; Senlian Hong; Xing Chen; Peng Chen