Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziying Yan is active.

Publication


Featured researches published by Ziying Yan.


Journal of Clinical Investigation | 2000

Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus

Dongsheng Duan; Yongping Yue; Ziying Yan; Jusan Yang; John F. Engelhardt

The restriction of viral receptors and coreceptors to the basolateral surface of airway epithelial cells has been blamed for the inefficient transfer of viral vectors to the apical surface of this tissue. We now report, however, that differentiated human airway epithelia internalize rAAV type-2 virus efficiently from their apical surfaces, despite the absence of known adeno-associated virus-2 (AAV-2) receptors or coreceptors at these sites. The dramatically lower transduction efficiency of rAAV infection from the apical surface of airway cells appears to result instead from differences in endosomal processing and nuclear trafficking of apically or basolaterally internalized virions. AAV capsid proteins are ubiquitinated after endocytosis, and gene transfer can be significantly enhanced by proteasome or ubiquitin ligase inhibitors. Tripeptide proteasome inhibitors increased persistent rAAV gene delivery from the apical surface >200-fold, to a level nearly equivalent to that achieved with basolateral infection. In vivo application of proteasome inhibitor in mouse lung augmented rAAV gene transfer from undetectable levels to a mean of 10.4 +/- 1.6% of the epithelial cells in large bronchioles. Proteasome inhibitors also increased rAAV-2-mediated gene transfer to the liver tenfold, but they did not affect transduction of skeletal or cardiac muscle. These findings suggest that tissue-specific ubiquitination of viral capsid proteins interferes with rAAV-2 transduction and provides new approaches to circumvent this barrier for gene therapy of diseases such as cystic fibrosis.


Journal of Clinical Investigation | 2008

Production of CFTR -null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus–mediated gene targeting and somatic cell nuclear transfer

Christopher S. Rogers; Yanhong Hao; Tatiana Rokhlina; Melissa Samuel; David A. Stoltz; Yuhong Li; Elena Petroff; Daniel W. Vermeer; Amanda C. Kabel; Ziying Yan; Lee D. Spate; David Wax; Clifton N. Murphy; August Rieke; Kristin M. Whitworth; Michael L. Linville; Scott W. Korte; John F. Engelhardt; Michael Welsh; Randall S. Prather

Progress toward understanding the pathogenesis of cystic fibrosis (CF) and developing effective therapies has been hampered by lack of a relevant animal model. CF mice fail to develop the lung and pancreatic disease that cause most of the morbidity and mortality in patients with CF. Pigs may be better animals than mice in which to model human genetic diseases because their anatomy, biochemistry, physiology, size, and genetics are more similar to those of humans. However, to date, gene-targeted mammalian models of human genetic disease have not been reported for any species other than mice. Here we describe the first steps toward the generation of a pig model of CF. We used recombinant adeno-associated virus (rAAV) vectors to deliver genetic constructs targeting the CF transmembrane conductance receptor (CFTR) gene to pig fetal fibroblasts. We generated cells with the CFTR gene either disrupted or containing the most common CF-associated mutation (DeltaF508). These cells were used as nuclear donors for somatic cell nuclear transfer to porcine oocytes. We thereby generated heterozygote male piglets with each mutation. These pigs should be of value in producing new models of CF. In addition, because gene-modified mice often fail to replicate human diseases, this approach could be used to generate models of other human genetic diseases in species other than mice.


Journal of Clinical Investigation | 2010

Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis

Xingshen Sun; Hongshu Sui; John T. Fisher; Ziying Yan; Xiaoming Liu; Hyung-Ju Cho; Nam Soo Joo; Yulong Zhang; Weihong Zhou; Yaling Yi; Joann M. Kinyon; Diana C.M. Lei-Butters; Michelle Griffin; Paul W. Naumann; Meihui Luo; Jill Ascher; Kai Wang; Timothy S. Frana; Jeffrey J. Wine; David K. Meyerholz; John F. Engelhardt

Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments.


Gene Therapy | 2005

Intracellular trafficking of adeno-associated viral vectors

Wei Ding; Liang Zhang; Ziying Yan; John F. Engelhardt

Adeno-associated virus (AAV) has attracted considerable interest as a gene therapy vector over the past decade. In all, 85% of the current 2052 PubMed references on AAV (as of December 2004) have been published in the last 10 years. As researchers have moved forward with using this vector system for gene delivery, an increased appreciation for the complexities of AAV biology has emerged. The biology of recombinant AAV (rAAV) transduction has demonstrated considerable diversity in different cell types and target tissues. This review will summarize the current understanding of events that control rAAV transduction following receptor binding and leading to nuclear uptake. These stages are broadly classified as intracellular trafficking and have been found to be a major rate-limiting step in rAAV transduction for many cell types. Advances in understanding this area of rAAV biology will help to improve the efficacy of this vector system for the treatment of inherited and acquired diseases.


Journal of Virology | 2002

Virus-Mediated Transduction of Murine Retina with Adeno-Associated Virus: Effects of Viral Capsid and Genome Size

Grace S. Yang; Michael F.G. Schmidt; Ziying Yan; Jonathan D. Lindbloom; Thomas Harding; Brian A. Donahue; John F. Engelhardt; Robert M. Kotin; Beverly L. Davidson

ABSTRACT Gene therapy vectors based on adeno-associated viruses (AAVs) show promise for the treatment of retinal degenerative diseases. In prior work, subretinal injections of AAV2, AAV5, and AAV2 pseudotyped with AAV5 capsids (AAV2/5) showed variable retinal pigmented epithelium (RPE) and photoreceptor cell transduction, while AAV2/1 predominantly transduced the RPE. To more thoroughly compare the efficiencies of gene transfer of AAV2, AAV3, AAV5, and AAV6, we quantified, using stereological methods, the kinetics and efficiency of AAV transduction to mouse photoreceptor cells. We observed persistent photoreceptor and RPE transduction by AAV5 and AAV2 up to 31 weeks and found that AAV5 transduced a greater volume than AAV2. AAV5 containing full-length or half-length genomes and AAV2/5 transduced comparable numbers of photoreceptor cells with similar rates of onset of expression. Compared to AAV2, AAV5 transduced significantly greater numbers of photoreceptor cells at 5 and 15 weeks after surgery (greater than 1,000 times and up to 400 times more, respectively). Also, there were 30 times more genome copies in eyes injected with AAV2/5 than in eyes injected with AAV2. Comparing AAVs with half-length genomes, AAV5 transduced only four times more photoreceptor cells than AAV2 at 5 weeks and nearly equivalent numbers at 15 weeks. The enhancement of transduction was seen at the DNA level, with 50 times more viral genome copies in retinas injected with AAV having short genomes than in retinas injected with AAV containing full-length ones. Subretinal injection of AAV2/6 showed only RPE transduction at 5 and 15 weeks, while AAV2/3 did not transduce retinal cells. We conclude that varying genome length and AAV capsids may allow for improved expression and/or gene transfer to specific cell types in the retina.


Nature Medicine | 2000

A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation

Dongsheng Duan; Yongping Yue; Ziying Yan; John F. Engelhardt

A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation


Journal of Clinical Investigation | 2008

Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets.

Xingshen Sun; Ziying Yan; Yaling Yi; Ziyi Li; Diana Lei; Christopher S. Rogers; Juan Chen; Yulong Zhang; Michael J. Welsh; Gregory H. Leno; John F. Engelhardt

Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene-deficient model in the domestic ferret using recombinant adeno-associated virus-mediated gene targeting in fibroblasts, followed by nuclear transfer cloning. As part of this approach, we developed a somatic cell rejuvenation protocol using serial nuclear transfer to produce live CFTR-deficient clones from senescent gene-targeted fibroblasts. We transferred 472 reconstructed embryos into 11 recipient jills and obtained 8 healthy male ferret clones heterozygous for a disruption in exon 10 of the CFTR gene. To our knowledge, this study represents the first description of genetically engineered ferrets and describes an approach that may be of substantial utility in modeling not only CF, but also other genetic diseases.


Journal of Virology | 2004

Distinct Classes of Proteasome-Modulating Agents Cooperatively Augment Recombinant Adeno-Associated Virus Type 2 and Type 5-Mediated Transduction from the Apical Surfaces of Human Airway Epithelia

Ziying Yan; Roman Zak; Yulong Zhang; Wei Ding; Simon Godwin; Keith Munson; Richard W. Peluso; John F. Engelhardt

ABSTRACT Tripeptidyl aldehyde proteasome inhibitors have been shown to effectively increase viral capsid ubiquitination and transduction of recombinant adeno-associated virus type 2 (rAAV-2) and rAAV-5 serotypes. In the present study we have characterized a second class of proteasome-modulating agents (anthracycline derivatives) for their ability to induce rAAV transduction. The anthracycline derivatives doxorubicin and aclarubicin were chosen for analysis because they have been shown to interact with the proteasome through a mechanism distinct from that of tripeptidyl aldehydes. Our studies demonstrated that doxorubicin and aclarubicin also significantly augmented rAAV transduction in airway cell lines, polarized human airway epithelia, and mouse lungs. Both tripeptidyl aldehyde and anthracycline proteasome-modulating agents similarly augmented nuclear accumulation of rAAV in A549 and IB3 airway cell lines. However, these two cell types demonstrated cell specificity in the ability of N-acetyl-l-leucyl-l-leucyl-l-norleucine (LLnL) or doxorubicin to augment rAAV transduction. Interestingly, the combined administration of LLnL and doxorubicin resulted in substantially increased transduction (>2,000-fold) following apical infection of human polarized epithelia with either rAAV-2 or rAAV-5. In summary, the cell type specificity of LLnL and doxorubicin to induce rAAV transduction, together with the ability of these compounds to synergistically enhance rAAV transduction in polarized airway epithelial induction, suggests that these two classes of compounds likely modulate different proteasome functions that affect rAAV transduction. Findings from this study provide new insights into how modulation of proteasome function can be effectively used to augment rAAV transduction in airway epithelia for gene therapy of cystic fibrosis.


Journal of Virology | 2001

Enhancement of Muscle Gene Delivery with Pseudotyped Adeno-Associated Virus Type 5 Correlates with Myoblast Differentiation

Dongsheng Duan; Ziying Yan; Yongping Yue; Wei Ding; John F. Engelhardt

ABSTRACT Adeno-associated virus (AAV)-based muscle gene therapy has achieved tremendous success in numerous animal models of human diseases. Recent clinical trials with this vector have also demonstrated great promise. However, to achieve therapeutic benefit in patients, large inocula of virus will likely be necessary to establish the required level of transgene expression. For these reasons, efforts aimed at increasing the efficacy of AAV-mediated gene delivery to muscle have the potential for improving the safety and therapeutic benefit in clinical trials. In the present study, we compared the efficiency of gene delivery to mouse muscle cells for recombinant AAV type 2 (rAAV-2) and rAAV-2cap5 (AAV-2 genomes pseudo-packaged into AAV-5 capsids). Despite similar levels of transduction by these two vectors in undifferentiated myoblasts, pseudotyped rAAV-2cap5 demonstrated dramatically enhanced transduction in differentiated myocytes in vitro (>500-fold) and in skeletal muscle in vivo (>200-fold) compared to rAAV-2. Serotype-specific differences in transduction efficiency did not directly correlate with viral binding to muscle cells but rather appeared to involve endocytic or intracellular barriers to infection. Furthermore, application of this pseudotyped virus in a mouse model of Duchennes muscular dystrophy also demonstrated significantly improved transduction efficiency. These findings should have a significant impact on improving rAAV-mediated gene therapy in muscle.


PLOS Pathogens | 2012

Establishment of a Reverse Genetics System for Studying Human Bocavirus in Human Airway Epithelia

Qinfeng Huang; Xuefeng Deng; Ziying Yan; Fang Cheng; Yong Luo; Weiran Shen; Diana C.M. Lei-Butters; Aaron Yun Chen; Yi Li; Liang Tang; Maria Söderlund-Venermo; John F. Engelhardt; Jianming Qiu

Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis.

Collaboration


Dive into the Ziying Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge