Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zodwa Dlamini is active.

Publication


Featured researches published by Zodwa Dlamini.


Biological Chemistry | 2001

Kallikrein and Kinin Receptor Expression in Inflammation and Cancer

Kanti D. Bhoola; Reena Ramsaroop; Johanna Plendl; Bilkish Cassim; Zodwa Dlamini; Sarala Naicker

Abstract The kallikrein family of serine proteases has been investigated in many inflammatory disorders as molecular mapping, gene characterisation and cloning of kinin receptor genes have unfolded experimentally. In the molecular events of the inflammatory response the kallikrein cascade plays a significant role, since it is considered to initiate and maintain systemic inflammatory responses and immune-modulated disorders. A primary event is the chemotactic attraction of neutrophils which deliver the kallikrein-kinin cascade to sites of cellular injury and carcinogenic transformation of cells. The present study establishes the casual involvement of the kallikrein cascade in infection, inflammatory joint disease, acute transplant rejection, renal glomerular diseases, angiogenesis and carcinoma. We provide strong evidence for new or enhanced expression of kinin B1 receptors in inflammation, and additionally the induction of kallikrein genes in angiogenesis and carcinoma. The results provide insights into possible roles of kallikrein inhibitors and kinin receptor antagonists.


Biological Chemistry | 2004

Colon cancer: genomics and apoptotic events

Charleen Rupnarain; Zodwa Dlamini; Sarala Naicker; Kanti D. Bhoola

Abstract Colon cancer is the third most common cancer globally. The risk of developing colon cancer is influenced by a number of factors that include age and diet, but is primarily a genetic disease, resulting from oncogene overexpression and tumour suppressor gene inactivation. The induction and progression of the disease is briefly outlined, as are the cellular changes that occur in its progression. While colon cancer is uniformly amenable to surgery if detected at the early stages, advanced carcinomas are usually lethal, with metastases to the liver being the most common cause of death. Oncogenes and genetic mutations that occur in colon cancer are featured. The molecules and signals that act to eradicate or initiate the apoptosis cascade in cancer cells, are elucidated, and these include caspases, Fas, Bax, Bid, APC, antisense hTERT, PUMA, 15-LOX-1, ceramide, butyrate, tributyrin and PPARγ, whereas the molecules which promote colon cancer cell survival are p53 mutants, Bcl-2, Neu3 and COX-2. Cancer therapies aimed at controlling colon cancer are reviewed briefly.


Biological Chemistry | 2004

Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade.

Thokozile Ledwaba; Zodwa Dlamini; Sarala Naicker; Kanti D. Bhoola

Abstract Cervical cancer is rated the second most common malignant tumour globally, and is aetiologically linked to human papillomavirus (HPV) infection. Here the cellular pathology under consideration of stem/progenitor cell carcinogenesis is reviewed. Of the three causative molecular mechanisms of cervical cancer, two are associated with HPV: firstly, the effect of the viral oncogenes, E6 and E7; and secondly, integration of the viral DNA into chromosomal regions of tumour phenotype. The third process involved is the repetitive loss of heterozygosity in some chromosomal regions. HPV can be classified into high- and low-risk types; the high-risk types encode two oncoproteins, E6 and E7, which interact with tumour suppressor proteins. The association results in the inactivation of tumour suppressor proteins and the abrogation of apoptosis. Apoptosis is referred to as programmed cell death, whereby a cell deliberately commits suicide, and thus regulates cell numbers during development and maintenance of cellular homeostasis. This review attempts to elucidate the role of apoptotic genes, and considers external factors that interact with HPV in the development and progression of cervical cancer. Therefore, an in-depth understanding of the apoptotic genes that control molecular mechanisms in cervical cancer are of critical importance. Useful targets for therapeutic strategies would be those that alter apoptotic pathways in a manner where the escape of HPV from surveillance by the host immune system is prevented. Such an approach directed at the apoptotic genes maybe useful in the treatment of cervical cancer.


Molecular and Cellular Biochemistry | 2012

De-regulation of the RBBP6 isoform 3/DWNN in human cancers

Zukile Mbita; Mervin Meyer; Amanda Skepu; Margot J. Hosie; Jasper Rees; Zodwa Dlamini

Retinoblastoma binding protein 6 (RBBP6) is a nuclear protein, previously implicated in the regulation of cell cycle and apoptosis. The human RBBP6 gene codes for three protein isoforms and isoform 3 consists of the domain with no name domain only whilst the other two isoforms, 1 and 2 comprise of additional zinc, RING, retinoblastoma and p53 binding domains. In this study, the localization of RBBP6 using RBBP6 variant 3 mRNA-specific probe was performed to investigate the expression levels of the gene in different tumours and find a link between RBBP6 and human carcinogenesis. Using FISH, real-time PCR and Western blotting analysis our results show that RBBP6 isoform 3 is down-regulated in human cancers. RBBP6 isoform 3 knock-down resulted in reduced G2/M cell cycle arrest whilst its over-expression resulted in increased G2/M cell cycle arrest using propidium iodide DNA staining. The results further demonstrate that the RBBP6 isoform 3 may be the cell cycle regulator and involved in mitotic apoptosis not the isoform 1 as previously reported for mice. In conclusion, these findings suggest that RBBP6 isoform 3 is a cell cycle regulator and may be de-regulated in carcinogenesis.


Viruses | 2014

Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets.

Zukile Mbita; Rodney Hull; Zodwa Dlamini

HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.


Parasites & Vectors | 2014

The role played by alternative splicing in antigenic variability in human endo-parasites

Rodney Hull; Zodwa Dlamini

Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.


International Journal of Molecular Sciences | 2015

Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

Zodwa Dlamini; Shonisani C. Tshidino; Rodney Hull

Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.


HIV/AIDS : Research and Palliative Care | 2017

Can the HIV-1 splicing machinery be targeted for drug discovery?

Zodwa Dlamini; Rodney Hull

HIV-1 is able to express multiple protein types and isoforms from a single 9 kb mRNA transcript. These proteins are also expressed at particular stages of viral development, and this is achieved through the control of alternative splicing and the export of these transcripts from the nucleus. The nuclear export is controlled by the HIV protein Rev being required to transport incompletely spliced and partially spliced mRNA from the nucleus where they are normally retained. This implies a close relationship between the control of alternate splicing and the nuclear export of mRNA in the control of HIV-1 viral proliferation. This review discusses both the processes. The specificity and regulation of splicing in HIV-1 is controlled by the use of specific splice sites as well as exonic splicing enhancer and exonic splicing silencer sequences. The use of these silencer and enhancer sequences is dependent on the serine arginine family of proteins as well as the heterogeneous nuclear ribonucleoprotein family of proteins that bind to these sequences and increase or decrease splicing. Since alternative splicing is such a critical factor in viral development, it presents itself as a promising drug target. This review aims to discuss the inhibition of splicing, which would stall viral development, as an anti-HIV therapeutic strategy. In this review, the most recent knowledge of splicing in human immunodeficiency viral development and the latest therapeutic strategies targeting human immunodeficiency viral splicing are discussed.


Archive | 2016

Current Immunotherapeutic Treatments in Colon Cancer

Zodwa Dlamini; Thandeka Khoza; Rodney Hull; Mpho Choene; Zilungile Mkhize-Kwitshana

The immune system is able to act against cancer cells and consequently these cells have developed a range of responses to evade or suppress the immune systems anticancer responses. The concept of cancer immunotherapy is based on techniques developed to restore or boost the ability of the immune system to recognize and target tumor cells. It is known that colon cancer does initiate an immune response and that this type of cancer initiates pathways and responses to evade or suppress the immune system. This chapter will discuss some of the dominant therapies being developed to treat colon cancer based on the concept of cancer immunotherapy. Cancer vaccines are based on the concept of providing the immune system with antigen targets derived from tumor-specific molecules, while monoclonal antibodies involve the development of antibodies specifically targeting proteins expressed on the surface of tumor cells. Antibodybased immunotherapy has further applications in the use of bispecific antibodies (BsAb), which are synthetic antibodies designed to be able to recognize two different antigens or epitopes and in this way can increase the immunoresponse and limit immune evasion observed in mono-targeted therapy. Immune checkpoint inhibitors target proteins that are responsible for keeping immune responses in check. Tumor cells overexpress these proteins in order to evade the immune response. Blocking these proteins will lead to an increased immune response against these cells. Cytokinebased immunotherapies involve the use of the immune systems’ own molecular messengers that are responsible for a robust immune response, to boost the antitumor response of the immune system. Oncolytic viral therapy is based on the use of viruses that selectively infect and replicate in cancer and associated endothelial cells and subsequently kills these cells. Adoptive immunotherapy involves the use of immune cells from the patient to be cultured and altered in the laboratory and then reintro‐ duced to boost the immune response. This is normally performed with T cells. Immunotherapy may be the next logical step in the development of an effective therapy for colon cancer and other cancers. The combination of these therapies with tradition‐ al chemotherapy or radiotherapy has shown promise in cancer treatment.


Non-Coding RNA | 2015

The Role of MicroRNAs in Kidney Disease

Sydwell Mukhadi; Rodney Hull; Zukile Mbita; Zodwa Dlamini

MicroRNAs (miRNAs) are short noncoding RNAs that regulate pathophysiological processes that suppress gene expression by binding to messenger RNAs. These biomolecules can be used to study gene regulation and protein expression, which will allow better understanding of many biological processes such as cell cycle progression and apoptosis that control the fate of cells. Several pathways have also been implicated to be involved in kidney diseases such as Transforming Growth Factor-β, Mitogen-Activated Protein Kinase signaling, and Wnt signaling pathways. The discovery of miRNAs has provided new insights into kidney pathologies and may provide new innovative and effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including renal cell carcinoma, diabetic nephropathy, nephritic syndrome, renal fibrosis, lupus nephritis and acute pyelonephritis. MiRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease prognosis and diagnosis. The purpose of this review is to examine the role of miRNA in kidney disease.

Collaboration


Dive into the Zodwa Dlamini's collaboration.

Top Co-Authors

Avatar

Zukile Mbita

University of South Africa

View shared research outputs
Top Co-Authors

Avatar

Rodney Hull

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasper Rees

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Sarala Naicker

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Lesetja Raymond Motadi

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Mervin Meyer

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Mpho Choene

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Nonkululeko Mthembu

University of the Witwatersrand

View shared research outputs
Researchain Logo
Decentralizing Knowledge