Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoe A. Dyson is active.

Publication


Featured researches published by Zoe A. Dyson.


Water Research | 2011

An examination of the mechanisms for stable foam formation in activated sludge systems

Steve Petrovski; Zoe A. Dyson; Eben S. Quill; Simon Jon McIlroy; Daniel Tillett; Robert J. Seviour

Screening pure cultures of 65 mycolic acid producing bacteria (Mycolata) isolated mainly from activated sludge with a laboratory based foaming test revealed that not all foamed under the conditions used. However, for most, the data were generally consistent with the flotation theory as an explanation for foaming. Thus a stable foam required three components, air bubbles, surfactants and hydrophobic cells. With non-hydrophobic cells, an unstable foam was generated, and in the absence of surfactants, cells formed a greasy surface scum. Addition of surfactant converted a scumming population into one forming a stable foam. The ability to generate a foam depended on a threshold cell number, which varied between individual isolates and reduced markedly in the presence of surfactant. Consequently, the concept of a universal threshold applicable to all foaming Mycolata is not supported by these data. The role of surfactants in foaming is poorly understood, but evidence is presented for the first time that surfactin synthesised by Bacillus subtilis may be important.


Journal of Virology | 2012

Small but Sufficient: the Rhodococcus Phage RRH1 Has the Smallest Known Siphoviridae Genome at 14.2 Kilobases

Steve Petrovski; Zoe A. Dyson; Robert J. Seviour; Daniel Tillett

ABSTRACT Bacteriophages are considered to be the most abundant biological entities on the planet. The Siphoviridae are the most commonly encountered tailed phages and contain double-stranded DNA with an average genome size of ∼50 kb. This paper describes the isolation from four different activated sludge plants of the phage RRH1, which is polyvalent, lysing five Rhodococcus species. It has a capsid diameter of only ∼43 nm. Whole-genome sequencing of RRH1 revealed a novel circularly permuted DNA sequence (14,270 bp) carrying 20 putative open reading frames. The genome has a modular arrangement, as reported for those of most Siphoviridae phages, but appears to encode only structural proteins and carry a single lysis gene. All genes are transcribed in the same direction. RRH1 has the smallest genome yet of any described functional Siphoviridae phage. We demonstrate that lytic phage can be recovered from transforming naked DNA into its host bacterium, thus making it a potentially useful model for studying gene function in phages.


Nature Communications | 2016

An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid

Vanessa K. Wong; Stephen Baker; Thomas Richard Connor; Derek Pickard; Andrew J. Page; Jayshree Dave; Niamh Murphy; Richard Holliman; Armine Sefton; Michael Millar; Zoe A. Dyson; Gordon Dougan; Kathryn E. Holt; Julian Parkhill; Nicholas A. Feasey; Robert A. Kingsley; Nicholas R. Thomson; Jacqueline A. Keane; F X Weill; Simon Le Hello; Jane Hawkey; David J. Edwards; Simon R. Harris; Amy K. Cain; James Hadfield; Peter J. Hart; Nga Tran Vu Thieu; Elizabeth J. Klemm; Robert F. Breiman; Conall H. Watson

The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations.


PLOS ONE | 2015

Lysis to Kill: Evaluation of the Lytic Abilities, and Genomics of Nine Bacteriophages Infective for Gordonia spp. and Their Potential Use in Activated Sludge Foam Biocontrol.

Zoe A. Dyson; Joseph Tucci; Robert J. Seviour; Steve Petrovski

Nine bacteriophages (phages) infective for members of the genus Gordonia were isolated from wastewater and other natural water environments using standard enrichment techniques. The majority were broad host range phages targeting more than one Gordonia species. When their genomes were sequenced, they all emerged as double stranded DNA Siphoviridae phages, ranging from 17,562 to 103,424 bp in size, and containing between 27 and 127 genes, many of which were detailed for the first time. Many of these phage genomes diverged from the expected modular genome architecture of other characterized Siphoviridae phages and contained unusual lysis gene arrangements. Whole genome sequencing also revealed that infection with lytic phages does not appear to prevent spontaneous prophage induction in Gordonia malaquae lysogen strain BEN700. TEM sample preparation techniques were developed to view both attachment and replication stages of phage infection.


PLOS ONE | 2016

The Formulation of Bacteriophage in a Semi Solid Preparation for Control of Propionibacterium acnes Growth.

Teagan L. Brown; Steve Petrovski; Zoe A. Dyson; Robert J. Seviour; Joseph Tucci

Aims To isolate and characterise phage which could lyse P. acnes and to formulate the phage into a delivery form for potential application in topical treatment of acne infection. Methods and Results Using standard phage isolation techniques, ten phage capable of lysing P. acnes were isolated from human skin microflora. Their genomes showed high homology to previously reported P. acnes phage. These phage were formulated into cetomacrogol cream aqueous at a concentration of 2.5x108 PFU per gram, and shown to lyse underlying P. acnes cells grown as lawn cultures. These phage formulations remained active for at least 90 days when stored at four degrees Celsius in a light protected container. Conclusions P. acnes phage formulated into cetomacrogol cream aqueous will lyse surrounding and underlying P. acnes bacteria, and are effective for at least 90 days if stored appropriately. Significance and Impact of the Study There are few reports of phage formulation into semi solid preparations for application as phage therapy. The formulation method described here could potentially be applied topically to treat human acne infections. The potential exists for this model to be extended to other phage applied to treat other bacterial skin infections.


PLOS Neglected Tropical Diseases | 2017

Whole Genome Sequence Analysis of Salmonella Typhi Isolated in Thailand before and after the Introduction of a National Immunization Program.

Zoe A. Dyson; Duy Pham Thanh; Ladaporn Bodhidatta; Carl J. Mason; Apichai Srijan; Maia A. Rabaa; Phat Voong Vinh; Tuyen Ha Thanh; Guy Thwaites; Stephen Baker; Kathryn E. Holt

Vaccines against Salmonella Typhi, the causative agent of typhoid fever, are commonly used by travellers, however, there are few examples of national immunization programs in endemic areas. There is therefore a paucity of data on the impact of typhoid immunization programs on localised populations of S. Typhi. Here we have used whole genome sequencing (WGS) to characterise 44 historical bacterial isolates collected before and after a national typhoid immunization program that was implemented in Thailand in 1977 in response to a large outbreak; the program was highly effective in reducing typhoid case numbers. Thai isolates were highly diverse, including 10 distinct phylogenetic lineages or genotypes. Novel prophage and plasmids were also detected, including examples that were previously only reported in Shigella sonnei and Escherichia coli. The majority of S. Typhi genotypes observed prior to the immunization program were not observed following it. Post-vaccine era isolates were more closely related to S. Typhi isolated from neighbouring countries than to earlier Thai isolates, providing no evidence for the local persistence of endemic S. Typhi following the national immunization program. Rather, later cases of typhoid appeared to be caused by the occasional importation of common genotypes from neighbouring Vietnam, Laos, and Cambodia. These data show the value of WGS in understanding the impacts of vaccination on pathogen populations and provide support for the proposal that large-scale typhoid immunization programs in endemic areas could result in lasting local disease elimination, although larger prospective studies are needed to test this directly.


Genome Announcements | 2016

Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1

Zoe A. Dyson; Robert J. Seviour; Joseph Tucci; Steve Petrovski

ABSTRACT We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa. The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA.


BMC Evolutionary Biology | 2018

Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods

Sebastián Duchêne; David A. Duchêne; Jemma L. Geoghegan; Zoe A. Dyson; Jane Hawkey; Kathryn E. Holt

BackgroundRecent developments in sequencing technologies make it possible to obtain genome sequences from a large number of isolates in a very short time. Bayesian phylogenetic approaches can take advantage of these data by simultaneously inferring the phylogenetic tree, evolutionary timescale, and demographic parameters (such as population growth rates), while naturally integrating uncertainty in all parameters. Despite their desirable properties, Bayesian approaches can be computationally intensive, hindering their use for outbreak investigations involving genome data for a large numbers of pathogen isolates. An alternative to using full Bayesian inference is to use a hybrid approach, where the phylogenetic tree and evolutionary timescale are estimated first using maximum likelihood. Under this hybrid approach, demographic parameters are inferred from estimated trees instead of the sequence data, using maximum likelihood, Bayesian inference, or approximate Bayesian computation. This can vastly reduce the computational burden, but has the disadvantage of ignoring the uncertainty in the phylogenetic tree and evolutionary timescale.ResultsWe compared the performance of a fully Bayesian and a hybrid method by analysing six whole-genome SNP data sets from a range of bacteria and simulations. The estimates from the two methods were very similar, suggesting that the hybrid method is a valid alternative for very large datasets. However, we also found that congruence between these methods is contingent on the presence of strong temporal structure in the data (i.e. clocklike behaviour), which is typically verified using a date-randomisation test in a Bayesian framework. To reduce the computational burden of this Bayesian test we implemented a date-randomisation test using a rapid maximum likelihood method, which has similar performance to its Bayesian counterpart.ConclusionsHybrid approaches can produce reliable inferences of evolutionary timescales and phylodynamic parameters in a fraction of the time required for fully Bayesian analyses. As such, they are a valuable alternative in outbreak studies involving a large number of isolates.


FEMS Microbiology Ecology | 2017

Eikelboom filamentous morphotypes 0675 and 0041 embrace members of the Chloroflexi: resolving their phylogeny, and design of fluorescence in situ hybridisation probes for their identification

Lachlan B. M. Speirs; Zoe A. Dyson; Joseph Tucci; Robert J. Seviour

ABSTRACT Although the phylogeny of many of the filamentous bacteria responsible for bulking in activated sludge plants is now known, and fluorescence in situ hybridisation (FISH) probes have been designed for their in situ identification, there are some noticeable exceptions. This study reports the identification of the Eikelboom morphotypes 0041 and 0675. Because these morphotypes differ only in their filament diameters, they are often considered together in surveys based on microscopic identifications. Here we show that they are phylogenetically distinct, and so should be viewed no longer as morphological variants of a single population. Amplicon sequencing data of Australian EBPR plant biomass containing types 0041 and 0675, and phylogenetic analysis have revealed that both, like many other bulking filament morphotypes, are members of the phylum Chloroflexi and probably representatives of two different genera. FISH probes are described here targeting each. Surveys carried out on Australian activated sludge plants suggest that type 0675 occurs more in plants designed to remove phosphorus, while type 0041 shows no such preference, and was seen in biomass samples from a wide range of plant configurations.


PLOS ONE | 2016

Locating and Activating Molecular 'Time Bombs': Induction of Mycolata Prophages.

Zoe A. Dyson; Teagan L. Brown; Ben Farrar; Stephen R. Doyle; Joseph Tucci; Robert J. Seviour; Steve Petrovski

Little is known about the prevalence, functionality and ecological roles of temperate phages for members of the mycolic acid producing bacteria, the Mycolata. While many lytic phages infective for these organisms have been isolated, and assessed for their suitability for use as biological control agents of activated sludge foaming, no studies have investigated how temperate phages might be induced for this purpose. Bioinformatic analysis using the PHAge Search Tool (PHAST) on Mycolata whole genome sequence data in GenBank for members of the genera Gordonia, Mycobacterium, Nocardia, Rhodococcus, and Tsukamurella revealed 83% contained putative prophage DNA sequences. Subsequent prophage inductions using mitomycin C were conducted on 17 Mycolata strains. This led to the isolation and genome characterization of three novel Caudovirales temperate phages, namely GAL1, GMA1, and TPA4, induced from Gordonia alkanivorans, Gordonia malaquae, and Tsukamurella paurometabola, respectively. All possessed highly distinctive dsDNA genome sequences.

Collaboration


Dive into the Zoe A. Dyson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Hawkey

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge