Zoe A. Wilson
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zoe A. Wilson.
Journal of Experimental Botany | 2009
Zoe A. Wilson; Dabing Zhang
The control of male fertility is of vital importance for crop breeding, hybrid generation, and the control of pollen release. Recent development in the analysis of Arabidopsis male sterile mutants has meant that there is a greater understanding of the gene regulatory networks controlling maternal development of the anther and the resultant sporophytes. With the advent of the genome sequence and tools to allow the analysis of gene function, this knowledge base is now extending into the monocot crop rice. This has shown high levels of similarity between the networks of pollen development in Arabidopsis and rice, which will serve as valuable tools to understand and manipulate this developmental pathway further in plants.
The Plant Cell | 2010
Jie Xu; Caiyun Yang; Zheng Yuan; Dasheng Zhang; Martha Y. Gondwe; Zhiwen Ding; Wanqi Liang; Dabing-B. Zhang; Zoe A. Wilson
This study identifies targets and interacting factors of an Arabidopsis basic helix-loop-helix protein, ABORTED MICROSPORES (AMS), which is known to be required for pollen development. AMS is found to regulate the expression of several genes involved in metabolism and pollen wall deposition. The Arabidopsis thaliana ABORTED MICROSPORES (AMS) gene encodes a basic helix-loop-helix (bHLH) transcription factor that is required for tapetal cell development and postmeiotic microspore formation. However, the regulatory role of AMS in anther and pollen development has not been fully defined. Here, we show by microarray analysis that the expression of 549 anther-expressed genes was altered in ams buds and that these genes are associated with tapetal function and pollen wall formation. We demonstrate that AMS has the ability to bind in vitro to DNA containing a 6-bp consensus motif, CANNTG. Moreover, 13 genes involved in transportation of lipids, oligopeptides, and ions, fatty acid synthesis and metabolism, flavonol accumulation, substrate oxidation, methyl-modification, and pectin dynamics were identified as direct targets of AMS by chromatin immunoprecipitation. The functional importance of the AMS regulatory pathway was further demonstrated by analysis of an insertional mutant of one of these downstream AMS targets, an ABC transporter, White-Brown Complex homolog, which fails to undergo pollen development and is male sterile. Yeast two-hybrid screens and pull-down assays revealed that AMS has the ability to interact with two bHLH proteins (AtbHLH089 and AtbHLH091) and the ATA20 protein. These results provide insight into the regulatory role of the AMS network during anther development.
The Plant Cell | 2007
Caiyun Yang; Gema Vizcay-Barrena; Katie Conner; Zoe A. Wilson
The Arabidopsis thaliana MALE STERILITY1 (MS1) gene is critical for viable pollen formation and has homology to the PHD-finger class of transcription factors; however, its role in pollen development has not been fully defined. We show that MS1 transcription appears to be autoregulated by the wild-type MS1 transcript or protein. Using a functional green fluorescent protein (GFP) fusion to analyze the temporal and spatial expression of MS1, we demonstrate that the MS1:GFP protein is nuclear localized within the tapetum and is expressed in a developmentally regulated manner between late tetraspore and microspore release, then rapidly breaks down, probably by ubiquitin-dependent proteolysis. Absence of MS1 expression results in changes in tapetal secretion and exine structure. Microarray analysis has shown that 260 (228 downregulated and 32 upreglated) genes have altered expression in young ms1 buds. These genes are primarily associated with pollen wall and coat formation; however, a number of transcription factors and Cys proteases have also been identified as the putative primary regulatory targets of MS1. Ectopic expression of MS1 alters transcriptional regulation of vegetative gene expression, resulting in stunted plants with increased levels of branching, partially fertile flowers and an apparent increase in wall material on mature pollen. MS1 therefore plays a critical role in the induction of pollen wall and pollen coat materials in the tapetum and, ultimately, the production of viable pollen.
The Plant Cell | 2007
Caiyun Yang; Zhengyao Xu; Jie Song; Katie Conner; Gema Vizcay Barrena; Zoe A. Wilson
The Arabidopsis thaliana MYB26/MALE STERILE35 (MS35) gene is critical for the development of secondary thickening in the anther endothecium and subsequent dehiscence. MYB26 is localized to the nucleus and regulates endothecial development and secondary thickening in a cell-specific manner in the anther. MYB26 expression is seen in anthers and also in the style and nectaries, although there is no effect on female fertility in the ms35 mutant. MYB26 expression in anthers occurs early during endothecial development, with maximal expression during pollen mitosis I and bicellular stages, indicating a regulatory role in specifying early endothecial cell development. Overexpression of MYB26 results in ectopic secondary thickening in both Arabidopsis and tobacco (Nicotiana tabacum) plants, predominantly within the epidermal tissues. MYB26 regulates a number of genes linked to secondary thickening, including IRREGULAR XYLEM1 (IRX1), IRX3, IRX8, and IRX12. Changes in expression were also detected in two NAC domain genes, NAC SECONDARY WALL–PROMOTING FACTOR1 (NST1) and NST2, which have been linked to secondary thickening in the anther endothecium. These data indicate that MYB26 regulates NST1 and NST2 expression and in turn controls the process of secondary thickening. Therefore, MYB26 appears to function in a regulatory role involved in determining endothecial cell development within the anther and acts upstream of the lignin biosynthesis pathway.
Plant Physiology | 2009
Zheng Yuan; Shan Gao; Da-Wei Xue; Da Luo; Lan-Tian Li; Shuyan Ding; Xuan Yao; Zoe A. Wilson; Qian Qian; Dabing Zhang
Poaceae, one of the largest flowering plant families in angiosperms, evolved distinct inflorescence and flower morphology diverging from eudicots and other monocots. However, the mechanism underlying the specification of flower morphology in grasses remains unclear. Here we show that floral zygomorphy along the lemma-palea axis in rice (Oryza sativa) is partially or indirectly determined by the CYCLOIDEA (CYC)-like homolog RETARDED PALEA1 (REP1), which regulates palea identity and development. The REP1 gene is only expressed in palea primordium during early flower development, but during later floral stages is radially dispersed in stamens and the vascular bundles of the lemma and palea. The development of palea is significantly retarded in the rep1 mutant and its palea has five vascular bundles, which is similar to the vascular pattern of the wild-type lemma. Furthermore, ectopic expression of REP1 caused the asymmetrical overdifferentiation of the palea cells, altering their floral asymmetry. This work therefore extends the function of the TCP gene family members in defining the diversification of floral morphology in grasses and suggests that a common conserved mechanism controlling floral zygomorphy by CYC-like genes exists in both eudicots and the grasses.
Plant Physiology | 2011
Hui Li; Zheng Yuan; Gema Vizcay-Barrena; Caiyun Yang; Wanqi Liang; Jie Zong; Zoe A. Wilson; Dabing Zhang
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.
Journal of Experimental Botany | 2011
Zoe A. Wilson; Jie Song; Benjamin Taylor; Caiyun Yang
Controlling male fertility is an important goal for plant reproduction and selective breeding. Hybrid vigour results in superior growth rates and increased yields of hybrids compared with inbred lines; however, hybrid generation is costly and time consuming. A better understanding of anther development and pollen release will provide effective mechanisms for the control of male fertility and for hybrid generation. Male sterility is associated not only with the lack of viable pollen, but also with the failure of pollen release. In such instances a failure of anther dehiscence has the advantage that viable pollen is produced, which can be used for subsequent rescue of fertility. Anther dehiscence is a multistage process involving localized cellular differentiation and degeneration, combined with changes to the structure and water status of the anther to facilitate complete opening and pollen release. After microspore release the anther endothecium undergoes expansion and deposition of ligno-cellulosic secondary thickening. The septum separating the two locules is then enzymatically lysed and undergoes a programmed cell death-like breakdown. The stomium subsequently splits as a consequence of the stresses associated with pollen swelling and anther dehydration. The physical constraints imposed by the thickening in the endothecium limit expansion, placing additional stress on the anther, so as it dehydrates it opens and the pollen is released. Jasmonic acid has been shown to be a critical signal for dehiscence, although other hormones, particularly auxin, are also involved. The key regulators and physical constraints of anther dehiscence are discussed.
Nature Communications | 2013
Ningning Niu; Wanqi Liang; Xijia Yang; Weilin Jin; Zoe A. Wilson; Jianping Hu; Dabing Zhang
Programmed cell death is essential for the development of multicellular organisms, yet pathways of plant programmed cell death and its regulation remain elusive. Here we report that ETERNAL TAPETUM 1, a basic helix-loop-helix transcription factor conserved in land plants, positively regulates programmed cell death in tapetal cells in rice anthers. eat1 exhibits delayed tapetal cell death and aborted pollen formation. ETERNAL TAPETUM 1 directly regulates the expression of OsAP25 and OsAP37, which encode aspartic proteases that induce programmed cell death in both yeast and plants. Expression and genetic analyses revealed that ETERNAL TAPETUM 1 acts downstream of TAPETUM DEGENERATION RETARDATION, another positive regulator of tapetal programmed cell death, and that ETERNAL TAPETUM 1 can also interact with the TAPETUM DEGENERATION RETARDATION protein. This study demonstrates that ETERNAL TAPETUM 1 promotes aspartic proteases triggering plant programmed cell death, and reveals a dynamic regulatory cascade in male reproductive development in rice.
Trends in Plant Science | 2011
Andrew R.G. Plackett; Stephen G. Thomas; Zoe A. Wilson; Peter Hedden
Stamen development is governed by a conserved genetic pathway, within which the role of hormones has been the subject of considerable recent research. Our understanding of the involvement of gibberellin (GA) signalling in this developmental process is further advanced than for the other phytohormones, and here we review recent experimental results in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) that have provided insight into the timing and mechanisms of GA regulation of stamen development, identifying the tapetum and developing pollen as major targets. GA signalling governs both tapetum secretory functions and entry into programmed cell death via the GAMYB class of transcription factor, the targets of which integrate with the established genetic framework for the regulation of tapetum function at multiple hierarchical levels.
The Plant Cell | 2012
Andrew R.G. Plackett; Stephen J. Powers; Nieves Fernandez-Garcia; Terezie Urbanova; Yumiko Takebayashi; Mitsunori Seo; Yusuke Jikumaru; Reyes Benlloch; Ove Nilsson; Omar Ruiz-Rivero; Andrew Phillips; Zoe A. Wilson; Stephen G. Thomas; Peter Hedden
In a systematic study of the five Arabidopsis thaliana genes that encode the biosynthetic enzyme gibberellin 20-oxidase, we show by mutant analysis and examination of gene expression that three of the genes make the major contribution to plant height and fertility, with the other two genes playing minor roles. Gibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility. In vitro analysis revealed that GA20ox4 has full GA20ox activity, but GA20ox5 catalyzes only the first two reactions of the sequence by which GA12 is converted to GA9. GA20ox3 functions almost entirely redundantly with GA20ox1 and -2 at most developmental stages, including the floral transition, while GA20ox4 and -5 have very minor roles. These results are supported by analysis of the gene expression patterns in promoter:β-glucuronidase reporter lines. We demonstrate that fertility is highly sensitive to GA concentration, that GA20ox1, -2, and -3 have significant effects on floral organ growth and anther development, and that both GA deficiency and overdose impact on fertility. Loss of GA20ox activity causes anther developmental arrest, with the tapetum failing to degrade. Some phenotypic recovery of late flowers in GA-deficient mutants, including ga1-3, indicated the involvement of non-GA pathways in floral development.