Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoe Waibler is active.

Publication


Featured researches published by Zoe Waibler.


Nature | 2009

IFNα activates dormant haematopoietic stem cells in vivo.

Marieke Essers; Sandra Offner; William Blanco-Bose; Zoe Waibler; Ulrich Kalinke; Michel A. Duchosal; Andreas Trumpp

Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-α (IFNα), HSCs efficiently exit G0 and enter an active cell cycle. HSCs respond to IFNα treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFNα target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFNα/β receptor (IFNAR), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFNα stimulation, demonstrating that STAT1 and Sca-1 mediate IFNα-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil, HSCs pre-treated (primed) with IFNα and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFNα are functionally compromised and are rapidly out-competed by non-activatable Ifnar-/- cells in competitive repopulation assays. Whereas chronic activation of the IFNα pathway in HSCs impairs their function, acute IFNα treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFNα on leukaemic cells, and raise the possibility for new applications of type I interferons to target cancer stem cells.


The FASEB Journal | 2010

Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment

Sasidhar Murikinati; Eric Jüttler; Timo Keinert; Dirk A. Ridder; Sajjad Muhammad; Zoe Waibler; Catherine Ledent; Andreas Zimmer; Ulrich Kalinke; Markus Schwaninger

Activation of the cannabinoid 2 receptor (CB2) reduces ischemic injury in several organs. However, the mechanisms underlying this protective action are unclear. In a mouse model of ischemic stroke, we show that the CB2 agonist JWH‐133 (1 mg • kg”1 • d”1) decreases the infarct size measured 3 d after onset of ischemia. The neuroprotective effect of JWH‐133 was lost in CB2‐deficient mice, confirming the specificity of JWH‐133. Analysis of bone marrow chimeric mice revealed that bone marrow‐derived cells mediate the CB2 effect on ischemic brain injury. CB2 activation reduced the number of neutrophils in the ischemic brain as shown by FACS analysis and by measuring the levels of the neutrophil marker enzyme myeloperoxidase. Indeed, we found in vitro that CB2 activation inhibits adherence of neutrophils to brain endothelial cells. JWH‐133 (1 µM) also interfered with the migration of neutrophils induced by the endogenous chemokine CXCL2 (30 ng/ml) through activation of the MAP kinase p38. This effect on neutrophils is likely responsible for the neuroprotection mediated by JWH‐133 because JWH‐133 was no longer protective when neutrophils were depleted. In conclusion, our data demonstrate that by activating p38 in neutrophils, CB2 agonists inhibit neutrophil recruitment to the brain and protect against ischemic brain injury.— Murikinati, S., Jüttler, E., Keinert, T., Ridder, D. A., Muhammad, S., Waibler, Z., Ledent, C., Zimmer, A., Kalinke, U., Schwaninger, M. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J. 24, 788–798 (2010). www.fasebj.org


Journal of Virology | 2007

Modified Vaccinia Virus Ankara Induces Toll-Like Receptor-Independent Type I Interferon Responses

Zoe Waibler; Martina Anzaghe; Holger Ludwig; Shizuo Akira; Siegfried Weiss; Gerd Sutter; Ulrich Kalinke

ABSTRACT Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus strain undergoing clinical evaluation as a replication-deficient vaccine vector against various infections and tumor diseases. To analyze the basis of its high immunogenicity, we investigated the mechanism of how MVA induces type I interferon (IFN) responses. MVA stimulation of bone marrow-derived dendritic cells (DC) showed that plasmacytoid DC were main alpha IFN (IFN-α) producers that were triggered independently of productive infection, viral replication, or intermediate and late viral gene expression. Increased IFN-α levels were induced upon treatment with mildly UV-irradiated MVA, suggesting that a virus-encoded immune modulator(s) interfered with the host cytokine response. Mice devoid of Toll-like receptor 9 (TLR9), the receptor for double-stranded DNA, mounted normal IFN-α responses upon MVA treatment. Furthermore, mice devoid of the adaptors of TLR signaling MyD88 and TRIF and mice deficient in protein kinase R (PKR) showed IFN-α responses that were only slightly reduced compared to those of wild-type mice. MVA-induced IFN-α responses were critically dependent on autocrine/paracrine triggering of the IFN-α/β receptor and were independent of IFN-β, thus involving “one-half” of a positive-feedback loop. In conclusion, MVA-mediated type I IFN secretion was primarily triggered by non-TLR molecules, was independent of virus propagation, and critically involved IFN feedback stimulation. These data provide the basis to further improve MVA as a vaccine vector.


The Journal of Allergy and Clinical Immunology | 2010

Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: Role of macrophage scavenger receptor class A type I and II

Anne Ilchmann; Sven Burgdorf; Stephan Scheurer; Zoe Waibler; Ryoji Nagai; Anne Wellner; Yasuhiko Yamamoto; Hiroshi Yamamoto; Thomas Henle; Christian Kurts; Ulrich Kalinke; Stefan Vieths; Masako Toda

BACKGROUND The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. OBJECTIVE This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. METHODS AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. RESULTS Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. CONCLUSION SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens.


PLOS Pathogens | 2009

Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes.

Silvia Stockinger; Renate Kastner; Elisabeth Kernbauer; Andreas Pilz; Sandra Westermayer; Benjamin Reutterer; Didier Soulat; Gabriele Stengl; Claus Vogl; Theresa Frenz; Zoe Waibler; Tadatsugu Taniguchi; Thomas Rülicke; Ulrich Kalinke; Mathias Müller; Thomas Decker

Production of type I interferons (IFN-I, mainly IFNα and IFNβ) is a hallmark of innate immune responses to all classes of pathogens. When viral infection spreads to lymphoid organs, the majority of systemic IFN-I is produced by a specialized “interferon-producing cell” (IPC) that has been shown to belong to the lineage of plasmacytoid dendritic cells (pDC). It is unclear whether production of systemic IFN-I is generally attributable to pDC irrespective of the nature of the infecting pathogen. We have addressed this question by studying infections of mice with the intracellular bacterium Listeria monocytogenes. Protective innate immunity against this pathogen is weakened by IFN-I activity. In mice infected with L. monocytogenes, systemic IFN-I was amplified via IFN-β, the IFN-I receptor (IFNAR), and transcription factor interferon regulatory factor 7 (IRF7), a molecular circuitry usually characteristic of non-pDC producers. Synthesis of serum IFN-I did not require TLR9. In contrast, in vitro–differentiated pDC infected with L. monocytogenes needed TLR9 to transcribe IFN-I mRNA. Consistent with the assumption that pDC are not the producers of systemic IFN-I, conditional ablation of the IFN-I receptor in mice showed that most systemic IFN-I is produced by myeloid cells. Furthermore, results obtained with FACS-purified splenic cell populations from infected mice confirmed the assumption that a cell type with surface antigens characteristic of macrophages and not of pDC is responsible for bulk IFN-I synthesis. The amount of IFN-I produced in the investigated mouse lines was inversely correlated to the resistance to lethal infection. Based on these data, we propose that the engagement of pDC, the mode of IFN-I mobilization, as well as the shaping of the antimicrobial innate immune response by IFN-I differ between intracellular pathogens.


PLOS ONE | 2008

Signaling signatures and functional properties of anti-human CD28 superagonistic antibodies.

Zoe Waibler; Linda Y. Sender; Camilla Merten; Roland Hartig; Stefanie Kliche; Matthias Gunzer; Peter Reichardt; Ulrich Kalinke; Burkhart Schraven

Superagonistic CD28 antibodies (CD28SAs) activate T lymphocytes without concomitant perturbation of the TCR/CD3-complex. In rodents these reagents induce the preferential expansion of regulatory T cells and can be used for the treatment of autoimmune diseases. Unexpectedly, the humanized CD28 superagonist TGN1412 caused severe and life threatening adverse effects during a recently conducted phase I clinical trail. The underlying molecular mechanisms are as yet unclear. We show that TGN1412 as well as the commercially available CD28 superagonist ANC28.1 induce a delayed but extremely sustained calcium response in human naïve and memory CD4+ T cells but not in cynomolgus T lymphocytes. The sustained Ca++-signal was associated with the activation of multiple intracellular signaling pathways and together these events culminated in the rapid de novo synthesis of high amounts of pro-inflammatory cytokines, most notably IFN-γ and TNF-α. Importantly, sustained transmembranous calcium flux, activation of Src-kinases as well as activation of PI3K were found to be absolutely required for CD28SA-mediated production of IFN-γ and IL-2. Collectively, our data suggest a molecular basis for the severe side effects caused by TGN1412 and impinge upon the relevance of non-human primates as preclinical models for reagents that are supposed to modify the function of human T cells.


Journal of Virology | 2009

Vaccinia Virus-Mediated Inhibition of Type I Interferon Responses Is a Multifactorial Process Involving the Soluble Type I Interferon Receptor B18 and Intracellular Components

Zoe Waibler; Martina Anzaghe; Theresa Frenz; Astrid Schwantes; Christopher Pöhlmann; Holger Ludwig; Marcos Palomo-Otero; Antonio Alcami; Gerd Sutter; Ulrich Kalinke

ABSTRACT Poxviruses such as virulent vaccinia virus (VACV) strain Western Reserve encode a broad range of immune modulators that interfere with host responses to infection. Upon more than 570 in vitro passages in chicken embryo fibroblasts (CEF), chorioallantois VACV Ankara (CVA) accumulated mutations that resulted in highly attenuated modified vaccinia virus Ankara (MVA). MVA infection of mice and of dendritic cells (DC) induced significant type I interferon (IFN) responses, whereas infection with VACV alone or in combination with MVA did not. These results implied that VACV expressed an IFN inhibitor(s) that was functionally deleted in MVA. To further characterize the IFN inhibitor(s), infection experiments were carried out with CVA strains isolated after 152 (CVA152) and 386 CEF passages (CVA386). Interestingly, neither CVA152 nor CVA386 induced IFN-α, whereas the latter variant did induce IFN-β. This pattern suggested a consecutive loss of inhibitors during MVA attenuation. Similar to supernatants of VACV- and CVA152-infected DC cultures, recombinantly expressed soluble IFN decoy receptor B18, which is encoded in the VACV genome, inhibited MVA-induced IFN-α but not IFN-β. In the same direction, a B18R-deficient VACV variant triggered only IFN-α, confirming B18 as the soluble IFN-α inhibitor. Interestingly, VACV infection inhibited IFN responses induced by a multitude of different stimuli, including oligodeoxynucleotides containing CpG motifs, poly(I:C), and vesicular stomatitis virus. Collectively, the data presented show that VACV-mediated IFN inhibition is a multistep process involving secreted factors such as B18 plus intracellular components that cooperate to efficiently shut off systemic IFN-α and IFN-β responses.


PLOS Pathogens | 2009

Influenza B Virus Ribonucleoprotein Is a Potent Activator of the Antiviral Kinase PKR

Bianca Dauber; Luis Martínez-Sobrido; Jana Schneider; Rong Hai; Zoe Waibler; Ulrich Kalinke; Adolfo García-Sastre; Thorsten Wolff

Activation of the latent kinase PKR is a potent innate defense reaction of vertebrate cells towards viral infections, which is triggered by recognition of viral double-stranded (ds) RNA and results in a translational shutdown. A major gap in our understanding of PKRs antiviral properties concerns the nature of the kinase activating molecules expressed by influenza and other viruses with a negative strand RNA genome, as these pathogens produce little or no detectable amounts of dsRNA. Here we systematically investigated PKR activation by influenza B virus and its impact on viral pathogenicity. Biochemical analysis revealed that PKR is activated by viral ribonucleoprotein (vRNP) complexes known to contain single-stranded RNA with a 5′-triphosphate group. Cell biological examination of recombinant viruses showed that the nucleo-cytoplasmic transport of vRNP late in infection is a strong trigger for PKR activation. In addition, our analysis provides a mechanistic explanation for the previously observed suppression of PKR activation by the influenza B virus NS1 protein, which we show here to rely on complex formation between PKR and NS1s dsRNA binding domain. The high significance of this interaction for pathogenicity was revealed by the finding that attenuated influenza viruses expressing dsRNA binding-deficient NS1 proteins were rescued for high replication and virulence in PKR-deficient cells and mice, respectively. Collectively, our study provides new insights into an important antiviral defense mechanism of vertebrates and leads us to suggest a new model of PKR activation by cytosolic vRNP complexes, a model that may also be applicable to other negative strand RNA viruses.


Journal of Biological Chemistry | 2007

Identification of a Lysosomal Peptide Transport System Induced during Dendritic Cell Development

Özlem Demirel; Zoe Waibler; Ulrich Kalinke; Frank Grünebach; Silke Appel; Peter Brossart; Andrej Hasilik; Robert Tampé; Rupert Abele

The delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for peptide loading of MHC class I molecules in the endoplasmic reticulum, TAP-independent translocation pathways have been proposed but not identified so far. Based on its overlapping substrate specificity with TAP, we herein investigated the ABC transporter ABCB9, also named TAP-like (TAPL). Remarkably, TAPL expression is strongly induced during differentiation of monocytes to dendritic cells and to macrophages. TAPL does not, however, restore MHC class I surface expression in TAP-deficient cells, demonstrating that TAPL alone or in combination with single TAP subunits does not form a functional transport complex required for peptide loading of MHC I in the endoplasmic reticulum. In fact, by using quantitative immunofluorescence and subcellular fractionation, TAPL was detected in the lysosomal compartment co-localizing with the lysosome-associated membrane protein LAMP-2. By in vitro assays, we demonstrate a TAPL-specific translocation of peptides into isolated lysosomes, which strictly requires ATP hydrolysis. These results suggest a mechanism by which antigenic peptides have access to the lysosomal compartment in professional antigen-presenting cells.


European Journal of Immunology | 2008

Excessive CpG 1668 stimulation triggers IL-10 production by cDC that inhibits IFN-α responses by pDC

Zoe Waibler; Martina Anzaghe; Abdo Konur; Shizuo Akira; Werner Müller; Ulrich Kalinke

Upon stimulation with a wide range of concentrations of CpG oligodeoxynucleotide 2216 (CpG 2216), plasmacytoid DC are induced to produce type I IFN (IFN‐α/β). In contrast, CpG 1668 shows a bell‐shaped dose–response correlation, i.e. only intermediate but not high doses of CpG 1668 induce IFN‐α/β. Interestingly, high‐dose CpG 1668 completely inhibited IFN‐α responses induced by CpG 2216. Experiments using supernatant of high‐dose CpG‐1668‐treated cells indicated that secreted inhibitor(s) mediated the IFN‐α shut‐off. Among modulating cytokines, IL‐10 turned out to be one important negative regulator. In line with this, supernatants of IL‐10‐deficient DC cultures stimulated with high‐dose CpG 1668 did not inhibit IFN‐α production. Interestingly, high‐dose CpG 1668 also inhibited IFN‐α responses induced by the DNA‐encoded mouse cytomegalovirus, whereas IFN‐α responses induced by negative‐strand RNA‐encoded vesicular stomatitis virus were only marginally affected. Experiments with DC cultures devoid of TLR9 indicated that TLR9 was critically required to mediate stimulatory and modulatory signals by low and high concentrations of CpG 1668, respectively. Analysis of purified DC subsets showed that conventional DC were the main IL‐10 producers, whereas plasmacytoid DC hardly produced any IL‐10.

Collaboration


Dive into the Zoe Waibler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masako Toda

Paul Ehrlich Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Kochs

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge