Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zofia Baumann is active.

Publication


Featured researches published by Zofia Baumann.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Fukushima-derived radionuclides in the ocean and biota off Japan

Ken O. Buesseler; Steven R. Jayne; Nicholas S. Fisher; Irina I. Rypina; Hannes Baumann; Zofia Baumann; Crystaline F. Breier; Elizabeth M. Douglass; Jennifer George; Alison M. Macdonald; Hiroomi Miyamoto; Jun Nishikawa; Steven M. Pike; Sashiko Yoshida

The Tōhoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived 134Cs and 137Cs throughout waters 30–600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find 110mAg in zooplankton. Vertical profiles are used to calculate a total inventory of ∼2 PBq 137Cs in an ocean area of 150,000 km2. Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319–28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10–1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California

Daniel J. Madigan; Zofia Baumann; Nicholas S. Fisher

The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Evaluation of radiation doses and associated risk from the Fukushima nuclear accident to marine biota and human consumers of seafood

Nicholas S. Fisher; K. Beaugelin-Seiller; Thomas G. Hinton; Zofia Baumann; Daniel J. Madigan; Jacqueline Garnier-Laplace

Radioactive isotopes originating from the damaged Fukushima nuclear reactor in Japan following the earthquake and tsunami in March 2011 were found in resident marine animals and in migratory Pacific bluefin tuna (PBFT). Publication of this information resulted in a worldwide response that caused public anxiety and concern, although PBFT captured off California in August 2011 contained activity concentrations below those from naturally occurring radionuclides. To link the radioactivity to possible health impairments, we calculated doses, attributable to the Fukushima-derived and the naturally occurring radionuclides, to both the marine biota and human fish consumers. We showed that doses in all cases were dominated by the naturally occurring alpha-emitter 210Po and that Fukushima-derived doses were three to four orders of magnitude below 210Po-derived doses. Doses to marine biota were about two orders of magnitude below the lowest benchmark protection level proposed for ecosystems (10 µGy⋅h−1). The additional dose from Fukushima radionuclides to humans consuming tainted PBFT in the United States was calculated to be 0.9 and 4.7 µSv for average consumers and subsistence fishermen, respectively. Such doses are comparable to, or less than, the dose all humans routinely obtain from naturally occurring radionuclides in many food items, medical treatments, air travel, or other background sources. Although uncertainties remain regarding the assessment of cancer risk at low doses of ionizing radiation to humans, the dose received from PBFT consumption by subsistence fishermen can be estimated to result in two additional fatal cancer cases per 10,000,000 similarly exposed people.


Ecology | 2014

Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox

Daniel J. Madigan; Zofia Baumann; Aaron B. Carlisle; Danielle K. Hoen; Brian N. Popp; Heidi Dewar; Owyn E. Snodgrass; Barbara A. Block; Nicholas S. Fisher

Large pelagic predators play important roles in oceanic ecosystems, and may migrate vast distances to utilize resources in different marine ecoregions. Understanding movement patterns of migratory marine animals is critical for effective management, but often challenging, due to the cryptic habitat of pelagic migrators and the difficulty of assessing past movements. Chemical tracers can partially circumvent these challenges by reconstructing recent migration patterns. Pacific bluefin tuna (Thunnus orientalis; PBFT) inhabit the western and eastern Pacific Ocean, and are in steep decline due to overfishing. Understanding age-specific eastward transpacific migration patterns can improve management practices, but these migratory dynamics remain largely unquantified. Here, we combine a Fukushima-derived radiotracer (134Cs) with bulk tissue and amino acid stable isotope analyses of PBFT to distinguish recent migrants from residents of the eastern Pacific Ocean. The proportion of recent migrants to residents decreased in older year classes, though the proportion of older PBFT that recently migrated across the Pacific was greater than previous estimates. This novel toolbox of biogeochemical tracers can be applied to any species that crosses the North Pacific Ocean.


Environmental Toxicology and Chemistry | 2011

Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea

Zofia Baumann; Nicholas S. Fisher

We studied the influence of sediment geochemistry on bioavailability of As, Cd, and Cr in deposit-feeding polychaetes. Metal phase speciation in sediments was determined with a sequential extraction scheme, and assimilation efficiencies (AEs) of ingested metals were determined by pulse-chase feeding experiments using γ-emitting isotopes. Worms were fed sediments collected from geochemically diverse estuaries that were labeled by sorbing dissolved radiotracers or mixing with radiolabeled algae. Uptake of sediment-bound metals was compared with that from labeled algae or goethite. Metal AEs showed a positive relationship with the exchangeable and carbonate sedimentary fractions, whereas metals in iron and manganese oxides and acid-volatile sulfides, or in pyrite and other refractory material, were inversely correlated with AEs. Arsenic was most bioavailable from algae (72%), less from sediments mixed with algae (24-70%) and least from sediments labeled directly (1-12%). Arsenic AEs in sediments labeled directly showed a positive correlation with sedimentary Mn and Al and negative correlation with Fe. Cadmium AEs were positively correlated with salinity and negatively correlated with sedimentary organic C. The AEs of Cr from sediments or algae were less than 5%, but they were 34% from pure goethite. By quantifying the relationship of metal speciation in sediments with their bioavailability for deposit-feeding polychaetes, the present study provides new insight into understanding metal bioaccumulation in benthic invertebrates.


Environmental Science & Technology | 2013

Radiocesium in Pacific bluefin tuna Thunnus orientalis in 2012 validates new tracer technique.

Daniel J. Madigan; Zofia Baumann; Owyn E. Snodgrass; Halim A. Ergül; Heidi Dewar; Nicholas S. Fisher

The detection of Fukushima-derived radionuclides in Pacific bluefin tuna (PBFT) that crossed the Pacific Ocean to the California Current Large Marine Ecosystem (CCLME) in 2011 presented the potential to use radiocesium as a tracer in highly migratory species. This tracer requires that all western Pacific Ocean emigrants acquire the (134)Cs signal, a radioisotope undetectable in Pacific biota prior to the Fukushima accident in 2011. We tested the efficacy of the radiocesium tracer by measuring (134)Cs and (137)Cs in PBFT (n = 50) caught in the CCLME in 2012, more than a year after the Fukushima accident. All small PBFT (n = 28; recent migrants from Japan) had (134)Cs (0.7 ± 0.2 Bq kg(-1)) and elevated (137)Cs (2.0 ± 0.5 Bq kg(-1)) in their white muscle tissue. Most larger, older fish (n = 22) had no (134)Cs and only background levels of (137)Cs, showing that one year in the CCLME is sufficient for (134)Cs and (137)Cs values in PBFT to reach pre-Fukushima levels. Radiocesium concentrations in 2012 PBFT were less than half those from 2011 and well below safety guidelines for public health. Detection of (134)Cs in all recent migrant PBFT supports the use of radiocesium as a tracer in migratory animals in 2012.


Science of The Total Environment | 2014

Methylmercury in dried shark fins and shark fin soup from American restaurants.

Deepthi Nalluri; Zofia Baumann; Debra L. Abercrombie; Demian D. Chapman; Chad R. Hammerschmidt; Nicholas S. Fisher

Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from <0.01 to 34 ng/mL, with MMHg averaging 62 ± 7% of total Hg. The highest concentrations of MMHg and total Hg were observed in both fins and soup from large, high trophic level sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPAs reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2012

Factors influencing the assimilation of arsenic in a deposit-feeding polychaete

Zofia Baumann; Antonius Koller; Nicholas S. Fisher

We investigated mechanisms leading to the assimilation of particle-bound arsenic (As) ingested by the deposit-feeding polychaete Alitta succinea using a radiotracer approach. The release of As from different particle types into extracted gut fluid or bovine serum albumin (BSA), a gut fluid mimic, was measured. In addition, gut fluid proteins were analyzed by separating proteins via 2D gel electrophoresis, and protein peptide sequences were determined by mass spectrometry. Major ions in the gut fluid were measured by ion chromatography and metals by mass spectrometry. Percentages of particulate As release were related to As assimilation efficiencies (AEs) in polychaetes feeding on different particle types. AEs of As were highest from radiolabeled pure diatoms (72%) and radiolabeled diatoms added to sediment (51%), lower from radiolabeled sediment (10%), and lowest from a radiolabeled iron oxide mineral, goethite (2%). It appears that As release from particles is a necessary but not sufficient requirement of As assimilation. For example, 15% of As was released from goethite into the gut fluid but only 2% was assimilated by A. succinea. Our results suggest that the likelihood of As assimilation is higher when it is bound to an organic compound of nutritional value in the ingested particles.


Canadian Journal of Fisheries and Aquatic Sciences | 2017

Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic silverside, Menidia menidia).

Zofia Baumann; Robert P. Mason; David O. Conover; Prentiss Balcom; Celia Y. Chen; Kate L. Buckman; Nicholas S. Fisher; Hannes Baumann

Human exposure to the neurotoxic methylmercury (MeHg) occurs primarily via the consumption of marine fish, but the processes underlying large-scale spatial variations in fish MeHg concentrations [MeHg], which influence human exposure, are not sufficiently understood. We used the Atlantic silverside (Menidia menidia), an extensively studied model species and important forage fish, to examine latitudinal patterns in total Hg [Hg] and [MeHg]. Both [Hg] and [MeHg] significantly increased with latitude (0.014 and 0.048 μg MeHg g-1 dw per degree of latitude in juveniles and adults, respectively). Four known latitudinal trends in silverside traits help explain these patterns: latitudinal increase in MeHg assimilation efficiency, latitudinal decrease in MeHg efflux, latitudinal increase in weight loss due to longer and more severe winters, and latitudinal increase in food consumption as an adaptation to decreasing length of the growing season. Given the absence of a latitudinal pattern in particulate MeHg, a diet proxy for zooplanktivorous fish, we conclude that large-scale spatial variation in growth is the primary control of Hg bioaccumulation in this and potentially other fish species.


Environmental Science & Technology | 2018

Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China

Maodian Liu; Yipeng He; Zofia Baumann; Chenghao Yu; Shidong Ge; Xuejun Sun; Menghan Cheng; Huizhong Shen; Robert P. Mason; Long Chen; Qianggong Zhang; Xuejun Wang

Highly elevated concentrations of total mercury (THg) and methylmercury (MeHg) were found in the municipal sewage in Tibet. Material flow analysis supports the hypothesis that these elevated concentrations are related to regular ingestion of Hg-containing Traditional Tibetan Medicine (TTM). In Tibet in 2015, a total of 3600 kg of THg was released from human body into the terrestrial environment as a result of TTM ingestion, amounting to 45% of the total THg release into the terrestrial environment in Tibet, hence substantially enhancing the environmental Hg burden. Regular ingestion of TTM leads to chronic exposure of Tibetans to inorganic Hg (IHg) and MeHg, which is 34 to 3000-fold and 0-12-fold higher than from any other known dietary sources, respectively. Application of a human physiology model demonstrated that ingestion of TTM can induce high blood IHg and MeHg levels in the human body. Moreover, 180 days would be required for the MeHg to be cleared out of the human body and return to the initial concentration i.e. prior to the ingestion of 1 TTM pill. Our analysis suggests that high Hg level contained in TTM could be harmful to human health and elevate the environmental Hg burden in Tibet.

Collaboration


Dive into the Zofia Baumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Baumann

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Heidi Dewar

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Owyn E. Snodgrass

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Robert P. Mason

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken O. Buesseler

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crystaline F. Breier

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge