Zofia Zaleska-Rutczynska
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zofia Zaleska-Rutczynska.
Immunogenetics | 2000
Akie Sato; Felipe Figueroa; Brent W. Murray; E. Málaga-Trillo; Zofia Zaleska-Rutczynska; Holger Sültmann; Satoru Toyosawa; Claus Wedekind; Nicole Steck; Jan Klein
Abstract In tetrapods, the functional (classical) class I and class II B loci of the major histocompatibility complex (Mhc) are tightly linked in a single chromosomal region. In an earlier study, we demonstrated that in the zebrafish, Danio rerio, order Cypriniformes, the two classes are present on different chromosomes. Here, we show that the situation is similar in the stickleback, Gasterosteus aculeatus, order Gasterosteiformes, the common guppy, Poecilia reticulata, order Cyprinodontiformes, and the cichlid fish Oreochromis niloticus, order Perciformes. These data, together with unpublished results from other laboratories suggest that in all Euteleostei, the classical class I and class II B loci are in separate linkage groups, and that in at least some of these taxa, the class II loci are in two different groups. Since Euteleostei are at least as numerous as tetrapods, in approximately one-half of jawed vertebrates, the class I and class II regions are not linked.
Human Genetics | 1998
Blazenka Grahovac; Rem I. Sukernik; Colm O'hUigin; Zofia Zaleska-Rutczynska; Nadezhda Blagitko; Olga Raldugina; Tanja Kosutic; Yoko Satta; Felipe Figueroa; Naoyuki Takahata; Jan Klein
Abstract The populations that colonized Siberia diverged from one another in the Paleolithic and evolved in isolation until today. These populations are therefore a rich source of information about the conditions under which the initial divergence of modern humans occurred. In the present study we used the HLA system, first, to investigate the evolution of the human major histocompatibility complex (MHC) itself, and second, to reveal the relationships among Siberian populations. We determined allelic frequencies at five HLA class II loci (DRB1, DQA1, DQB1, DPA1, and DPB1) in seven Siberian populations (Ket, Evenk, Koryak, Chukchi, Nivkh, Udege, and Siberian Eskimo) by the combination of single-stranded conformational polymorphism and DNA sequencing analysis. We then used the gene frequency data to deduce the HLA class II haplotypes and their frequencies. Despite high polymorphism at four of the five loci, no new alleles could be detected. This finding is consistent with a conserved evolution of human class II MHC genes. We found a high number of HLA class II haplotypes in Siberian populations. More haplotypes have been found in Siberia than in any other population. Some of the haplotypes are shared with non-Siberian populations, but most of them are new, and some represent “forbidden” combinations of DQA1 and DQB1 alleles. We suggest that a set of “public” haplotypes was brought to Siberia with the colonizers but that most of the new haplotypes were generated in Siberia by recombination and are part of a haplotype pool that is turning over rapidly. The allelic frequencies at the DRB1 locus divide the Siberian populations into eastern and central Siberian branches; only the former shows a clear genealogical relationship to Amerinds.
Immunogenetics | 1992
Werner E. Mayer; Colm O'hUigin; Zofia Zaleska-Rutczynska; Jan Klein
Trans-specific evolution of allelic polymorphism at the major histocompatibility complex loci has been demonstrated in a number of species. Estimating the substitution rates and the age of trans-specifically evolving alleles requires detailed information about the alleles in related species. We provide such information for the chimpanzee DRB genes. DNA fragments encompassing exon 2 were amplified in vitro from genomic DNA of ten chimpanzees. The nucleotide sequences were determined and their relationship to the human DRB alleles was evaluated. The alleles were classified according to their positioni in dendrograms and the presence of lineage-specific motifs. Twenty alleles were found at the expressed loci Patr-DRB1,-DRB3, -DRB4, -DRB5, and at the pseudogenes Patr-DRB6, -DRB7; of these, 13 are new alleles. Two other chimpanzee sequences were classified as members of a new lineage tentatively designated DRBX. Chimpanzee counterparts of HLA-DRB1*01 and *04 were not detected. The number of alleles found at individual loci indicates asymmetrical distribution of polymorphism between humans and chimpanzees. Estimations of intra-lineage divergence times suggest that the lineages are more than 30 million year old. Predictions of major chimpanzee DRB haplotypes are made.
Genomics | 1989
Vladimir Vincek; Hiroshi Kawaguchi; Kazuya Mizuno; Zofia Zaleska-Rutczynska; Masanori Kasahara; Jiří Forejt; Felipe Figueroa; Jan Klein
Chromosome 17 of the laboratory variant of the house mouse (Mus musculus L.), MMU17, has been studied extensively, largely because of its involvement in the control of immune response and embryonic as well as male germ cell differentiation. A detailed linkage map of this chromosome is therefore a highly desired goal. As the first step toward achieving this goal, we have isolated, using a LINE 1 repetitive sequence as a probe, 52 anonymous DNA clones from MMU17. Twenty-seven repetitive sequence-free probes isolated from these clones displayed restriction fragment length variation among common inbred strains and could be mapped with the help of recombinant inbred strains, congenic strains, F2 segregants, or intra-t recombinants. Together with markers identified previously, the new markers can be used to construct a map of MMU17 that contains 125 DNA loci. The markers are distributed over a length of approximately 71 cM, which probably represents the entire length of MMU17. Most of the markers reside in the proximal portion of the chromosome, which contains the t and H-2 complexes; this chromosomal region is now fairly well mapped. The distal region of MMU17, on the other hand, is populated by only a few, rather imprecisely mapped markers. Molecular maps are available for most of the H-2 complex and for parts of the t complex.
Immunogenetics | 1992
Hiroshi Kawaguchi; Zofia Zaleska-Rutczynska; Felipe Figueroa; Colm O'hUigin; Jan Klein
The human complement component 4 is encoded in two genes, C4A and C4B, residing between the class I and class II genes of the major histocompatibility complex. The C4A and C4B molecules differ in their biological activity, the former binding more efficiently to proteins than to carbohydrates while for the latter, the opposite holds true. To shed light on the origin of the C4 genes we isolated cosmid clones bearing the C4 genes of a chimpanzee, a gorilla, and an orang-utan. From the clones, we isolated the fragments coding for the C4d part of the gene (exons and introns) and sequenced them. Altogether we sequenced eight gene fragments: three chimpanzee (Patr-C4-1*01, Patr-C4-1*02, Patr-C4-2*01), two gorilla (Gogo-C4-1*01, Gogo-C4-2*01), and three orang-utan (Popy-C4-1*01, Popy-C4-2*01, Popy-C4-3*01). Comparison of the sequences with each other and with human C4 sequences revealed that in the region believed to be responsible for the functional difference between the C4A and C4B proteins the C4A genes of the different species fell into one group and the C4B genes fell into another. In the rest of the sequence, however, the C4A and C4B genes of each species resembled each other more than they did C4 genes of other species. These results are interpreted as suggesting extensive homogenization (concerted evolution) of the C4 genes in each species, most likely by repeated unequal, homologous, intragenic crossing-over.
Immunogenetics | 1990
Vladimir Vincek; Jadranka Sertić; Zofia Zaleska-Rutczynska; Felipe Figueroa; Jan Klein
Congenic mouse strains are widely used in mapping traits to specific loci or short chromosomal regions. The precision of the mapping depends on the information available about the length of the differential segment—the segment introduced from the donor into the background strain. Until recently, very few markers flanking the differential locus were known and consequently the length of the foreign segment could only be determined imprecisely. Now, in an attempt to construct a map of the mouse chromosome 17, we have produced a set of DNA markers distributed along the chromosome. These markers provide a new opportunity to measure the length of the differential segment of the congenic strains and thus increase their usefulness for gene mapping. Here we examined the DNA of 96H-2 congenic strains using 30 DNA markers; of these, the most proximal is located roughly 1.5 centiMorgans (cM) from the centromere and the most distal is about 20 cM telomeric from theH-2 complex (the complex itself being some 20 cM from the centromere). The mapping depends on polymorphism among the input strains and can therefore establish only the minimal length of the differential segment. This point is emphasized by the fact that the average observed length of the differential segment is only about one half of the expected values.
Immunogenetics | 1983
Zofia Zaleska-Rutczynska; Felipe Figueroa; Jan Klein
Wild mice captured in Texas, Scotland, Federal Republic of Germany, Denmark, Spain, Greece, Israel, Egypt, and Chile were mated to inbred strains and through successive backcross matings and H-2 typing lines homozygous for wild-derivedH-2, haplotypes were established. The lines, which are neither congenic nor inbred, were then typed with antibodies defining knownH-2 alleles at class I and class II loci. In addition, antisera were produced by the immunization of inbred strains with tissues of the new lines. Sixteen of the lines were characterized in this manner. The characterization resulted in the identification of 16 newH-2 haplotypes, 11 new K alleles., 10 newD alleles, and 21 new class I antigenic determinants, most of them of the private type. Most of the haplotypes represent natural recombinants sharing segments of theH-2 complex with previously identified haplotypes. A number of haplotypes are recombinants between the K and the A loci, which in genetic studies have proved difficult to separate. The lines, however, also provide evidence for preservation of blocks of genes in theH-2 complex, particularly in the class II region. Some of class I alleles previously found in wild mice from Michigan have now been found again in these mice. Several class II alleles of these lines appear to be the same as those found in inbred strains. Identical or nearly identical class I and class II alleles thus commonly occur in different populations. These findings strengthen the argument that in populations,H-2 alleles are relatively stable.
Marine Biotechnology | 2000
Brent W. Murray; Philomeen Nilsson; Zofia Zaleska-Rutczynska; Holger Sültmann; Jan Klein
Abstract: The haplochromine cichlid species flocks of the East African Great Lakes are one of the best examples of adaptive radiation. Analysis of genetic variation among these species provides valuable information on species relationships and timing of speciation events. Although the haplochromine cichlids generally display little genetic variation, the major histocompatibility complex (Mhc) genes have been found to be highly variable. A study of the linkage relationships of the Mhc class I A genes in the cichlid fish Oreochromis niloticus was therefore undertaken. Class I loci were identified, and their segregation in seven mothers and their haploid embryos was determined. In total, 56 class I A sequences were found among the seven families. A strong concordance of segregation was observed in five haplotypes among the embryos, indicating a close linkage of all loci. The number of loci per haplotype varied from 11 to 17, while the total number of distinct loci found among all families was 22. These findings show that all class I A loci are linked in a single genetic cluster in O. niloticus.
Genomics | 1991
X. Y. Li; M. G. Mattei; Zofia Zaleska-Rutczynska; R Hooft van Huijsduijnen; Felipe Figueroa; J. Nadeau; Christophe Benoist; Diane Mathis
The genes coding for the A and B subunits of the transcription factor NF-Y are assigned by a combination of in situ hybridization and analysis of somatic cell hybrids and recombinant mouse strains. NF-YA is assigned to human chromosome 6p21 and to mouse chromosome 17. NF-YB is assigned to human chromosome 12 and to mouse chromosome 10.
Genetics Research | 1983
Felipe Figueroa; Zofia Zaleska-Rutczynska; Sabine Adolph; Joseph H. Nadeau; Jan Klein
A total of 207 wild mice trapped at different localities in southern Germany were tested for the presence of antigenic determinants controlled by class I genes ( K and D ) of the H-2 complex. The test was based on the complement-dependent killing of lymphocytes in the micro-cytotoxicity assay. Both private (allele-specific) and public (shared) determinants were tested using polyclonal and monoclonal antibodies. The results of the H-2 typing were in agreement with karyological typing which divided the sampled mice into 5 populations. Each population was characterized by a certain antigenic profile (occurrence of individual determinants at certain frequencies); the profiles of the individual populations were sufficiently unique to differentiate these populations but at the same time sufficiently similar to indicate common origin of the populations. The karyological typing of the same mice reveals that all 5 populations share 1 pair of metacentric chromosomes, Rb(4.12)1Tu , but that, in addition, each population has at least one metacentric chromosome differentiating it from other populations. We interpret these findings as evidence that all wild mice in southern Germany stem from a common stock in which the Rb(4.12)1Tu translocation became fixed and which subsequently differentiated into the individual populations. This differentiation is accompanied by the fixation of new Robertsonian translocations (different ones in different populations) and the acquisition of characteristic H-2 antigenic profiles.