Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zohaib Khurshid is active.

Publication


Featured researches published by Zohaib Khurshid.


Materials | 2015

Biodegradable Materials for Bone Repair and Tissue Engineering Applications

Zeeshan Sheikh; Shariq Najeeb; Zohaib Khurshid; Vivek Verma; Haroon Rashid; Michael Glogauer

This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results.


Materials | 2015

Advances in Nanotechnology for Restorative Dentistry

Zohaib Khurshid; Muhammad Sohail Zafar; Saad Bin Qasim; Sana Shahab; Mustafa Naseem; Ammar AbuReqaiba

Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients.


Materials | 2016

Potential of Electrospun Nanofibers for Biomedical and Dental Applications

Muhammad Sohail Zafar; Shariq Najeeb; Zohaib Khurshid; Masoud Vazirzadeh; Sana Zohaib; Bilal Najeeb; Farshid Sefat

Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed.


Journal of The Saudi Pharmaceutical Society | 2016

Oral antimicrobial peptides: Types and role in the oral cavity

Zohaib Khurshid; Mustafa Naseem; Zeeshan Sheikh; Shariq Najeeb; Sana Shahab; Muhammad Sohail Zafar

Antimicrobial peptides (AMPs) are a wide-ranging class of host-defense molecules that act early to contest against microbial invasion and challenge. These are small cationic peptides that play an important in the development of innate immunity. In the oral cavity, the AMPs are produced by the salivary glands and the oral epithelium and serve defensive purposes. The aim of this review was to discuss the types and functions of oral AMPs and their role in combating microorganisms and infections in the oral cavity.


International Journal of Dentistry | 2015

Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

Shariq Najeeb; Zohaib Khurshid; Jukka Pekka Matinlinna; Fahad Siddiqui; Mohammad Zakaria Nassani; Kusai Baroudi

Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.


Journal of The Saudi Pharmaceutical Society | 2017

Histatin peptides: Pharmacological functions and their applications in dentistry

Zohaib Khurshid; Shariq Najeeb; Maria Mali; Syed Faraz Moin; Syed Qasim Raza; Sana Zohaib; Farshid Sefat; Muhammad Sohail Zafar

There are many human oral antimicrobial peptides responsible for playing important roles including maintenance, repairing of oral tissues (hard or soft) and defense against oral microbes. In this review we have highlighted the biochemistry, physiology and proteomics of human oral histatin peptides, secreted from parotid and submandibular salivary glands in human. The significance of these peptides includes capability for ionic binding that can kill fungal Candida albicans. They have histidine rich amino acid sequences (7–12 family members; corresponding to residues 12–24, 13–24, 12–25, 13–25, 5–11, and 5–12, respectively) for Histatin-3. However, Histatin-3 can be synthesized proteolytically from histatin 5 or 6. Due to their fungicidal response and high biocompatibility (little or no toxicity), these peptides can be considered as therapeutic agents with most probable applications for example, artificial saliva for denture wearers and salivary gland dysfunction conditions. The objectives of current article are to explore the human histatin peptides for its types, chemical and biological aspects. In addition, the potential for therapeutic bio-dental applications has been elaborated.


Tissue Engineering and Regenerative Medicine | 2015

Oral tissue engineering progress and challenges

Muhammad Sohail Zafar; Zohaib Khurshid; Khalid Almas

Tissue engineering is a multidisciplinary science. The progress of tissue engineering for dental tissues is promising and various dental soft and hard tissues have been regenerated successfully in vitro using stem cells. Prior to their applications practically, there are a number of challenges and unanswered questions that need to be resolved for further progress. It is expected that in next two to three decades, the field of dentistry will be changed significantly by the availability of innovative tissue engineered products in dental office. The objective of this review paper is to highlight the progress of tissue engineering for various dental hard and soft tissues such as enamel, dentin, alveolar bone, periodontium, oral mucosa, and salivary glands. In addition, the challenges in the progress of tissue engineering and future expectations have been discussed.


International Journal of Molecular Sciences | 2016

Advances of Proteomic Sciences in Dentistry

Zohaib Khurshid; Sana Zohaib; Shariq Najeeb; Muhammad Sohail Zafar; Rabia Rehman; Ihtesham Ur Rehman

Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.


Nutrients | 2016

The Role of Nutrition in Periodontal Health: An Update

Shariq Najeeb; Muhammad Sohail Zafar; Zohaib Khurshid; Sana Zohaib; Khalid Almas

Periodontal health is influenced by a number of factors such as oral hygiene, genetic and epigenetic factors, systemic health, and nutrition. Many studies have observed that a balanced diet has an essential role in maintaining periodontal health. Additionally, the influences of nutritional supplements and dietary components have been known to affect healing after periodontal surgery. Studies have attempted to find a correlation between tooth loss, periodontal health, and nutrition. Moreover, bone formation and periodontal regeneration are also affected by numerous vitamins, minerals, and trace elements. The aim of this review is to critically appraise the currently available data on diet and maintenance of periodontal health and periodontal healing. The effects of nutritional intervention studies to improve the quality of life and well-being of patients with periodontal disease have been discussed.


International Journal of Molecular Sciences | 2016

Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

Shariq Najeeb; Zohaib Khurshid; Muhammad Sohail Zafar; Abdul Samad Khan; Sana Zohaib; Juan Manuel Nuñez Martí; Salvatore Sauro; Jukka Pekka Matinlinna; Ihtesham Ur Rehman

Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

Collaboration


Dive into the Zohaib Khurshid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sana Zohaib

King Faisal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge